
Getting Started, Vol. I, R8.1 6-1

Chapter 6 Waveform Generation
Language

Introduction
Summit Design’s Waveform Generation Language (WGL) is a data description
language. It is used to convey an editable ASCII representation of the data
contained in Summit Design’s Waveform DataBase (WDB), allowing you to
use your system’s text editor to fully customize the database.

A binary format for the ScanState and Pattern sections is supported, to be
used (if desired) in place of ASCII pattern data. (Do not edit a WGL file that
contains binary pattern data; null pattern bits may be deleted by the editor.)

WGL supports both scan hardware and test program generation that uses
defined variables and embedded equation expressions.

NOTE
WGL constructs supporting scan hardware and equations are
preserved in the WDB only if you have a TDS WaveBridge that
includes scan support and equation support for your tester.

WGL programs are contained in an ASCII file called a WGL file. In this
chapter, the term “WGL file” is used to denote an ASCII file that contains a
WGL program. The term “WGL program” denotes the programming
constructs contained within the WGL file.

When to Use WGL
Since you can easily convert an existing TDS Standard Events Format (SEF)
database to a WDB using the WaveMaker Browser, and edit a new or existing

Waveform Generation Language

6-2 Getting Started, Vol. I, R8.1

database using the WaveMaker editors, you may have little occasion to use
WGL. However, WGL permits you to modify some parts of the WDB that are
not accessible by WaveMaker’s editors.

Use WGL to:

■ Transfer a WDB from one host platform type to another type. WDBs are
not otherwise portable.

■ View and edit the ATE-specific portions of the WDB. Such portions of the
WDB are not accessible by WaveMaker’s editors.

■ Create a WDB solely from WGL. This permits users who have a TDS
WaveBridge module, but do not have WaveMaker, to run WaveBridge with
a WDB.

■ Use binary pattern data from the CAE simulation as input to TDS. (See
“Binary WGL” on page 6-108.)

■ Use your favorite text editor to perform sophisticated text manipulation
operations, such as search and replace. (Do not edit a WGL file that
contains binary pattern data; null pattern bits may be deleted by the
editor.)

WGL is designed to be used in conjunction with Summit Design’s TDS WGL
In Converter and WGL Out Converter modules. See the “WGL In Converter”,
chapter, found in the In Converters Guide, and see the “WGL Out Converter”
chapter, found in the Out Converters Guide, for details on how to use the WGL
In Converter and the WGL Out Converter.

WGL and Wavemaker
Since WGL describes a WDB, the language necessarily reflects the structure
of the WDB. If you have used Summit Design’s WaveMaker editors to view a
WDB, you will recognize this similarity. Many of the entities (such as ATE Pin
and DUT Pin fields) that are visible in WaveMaker’s editors are easily
identifiable in WGL. Some WGL structures, however, are associated with
ATE-specific descriptions, and are not visible in the WaveMaker Editors. The
WGL Formats program block is an example of such a structure.

An example of the similarity of structure between the WaveMaker editors and
WGL program structure is the WaveMaker Timing Editor. The WaveMaker

Getting Started, Vol. I, R8.1 6-3

Waveform Generation Language

Timing Editor allows you to edit a TDS timing template, or TimePlate. The
TimePlate contains slots for one or more signals (identified by signal, group, or
bus name), a signal direction indicator, and a waveform track. Slots are the
area in which the signal name or names are entered.

Figure 1 shows the Timing Editor’s view of a TimePlate named Fetch. Note
the TimePlate name, the signal names, the signal directions, and the
waveform tracks; all of these entities can be described using WGL. Timing
channels are arbitrary entities that contain signal, group, or bus names,
direction information, and event and timing data.

The corresponding WGL description of the TimePlate Fetch is shown in the
following example. Note how the TimePlate name, the signal name, direction,
waveform track, and channel correspond to the same entities shown in the
Timing Editor.

Figure 1. WaveMaker Timing Editor showing the TimePlate Fetch

TimePlate name

Signal names

Signal direction

Waveform Tracks

Timing Channel

Waveform Generation Language

6-4 Getting Started, Vol. I, R8.1

Start Example

timeplate Fetch period 300nS

 CS_ENABLE := input[0pS:P, 30nS:S];
 CLOCK := input[0pS:D, 50nS:U, 100nS:D, 150nS:U, 200nS:D, 250nS:U,
300nS:D];
 A-BUS := input[0pS:D, 120nS:S, 260nS:D];
 LOAD := input[0pS:P, 30nS:S];
. . .
. . .
. . .

End Example

end

WGL Language Conventions
A WGL program is an ASCII text version of the information in the WDB.1 The
language is free-form (multiple white spaces are treated as a single white
space and line returns are ignored) and limited to a line length of 512
characters. WGL reserved words are not case sensitive; keywords may be
entered in any mix of upper and lower case letters. For user-defined names
and pattern state characters, case is significant. The language uses the ASCII
set of printable characters as legal input characters. WGL supports such
features as macros, include files, in-line comments, post-compilation
annotation, and many other operations normally available in programming
languages.

WGL Syntax Notation Conventions
In describing the syntax of WGL, the following variation of the Backus-Naur
Formalism (BNF) is used:

■ Two colons followed by an equivalence sign (::=) denote a syntactic
category to syntactic rules relationship.

1. Binary pattern files use the WGL syntax notation plus have additional notations. See “Bina-
ry File Format” on page 6-112.

Getting Started, Vol. I, R8.1 6-5

Waveform Generation Language

■ Double quotation marks (“ ”) or bold typeface denote the literal use of a
reserved word, typographical symbol, or parameter. If double quotation
marks are to be used literally, they are enclosed within single quotation
marks (‘ ’).

■ Angle brackets (< >) denote the use of a user-defined name, integer, or
floating number.

■ An equivalence sign (=) denotes the definition of a WGL reserved word or
lexical primitive.

■ Brackets ([]) denote optional syntax, appearing 0 or one time.

■ Braces ({ }) denote an unspecified repetition (0 to n times) of the enclosed
syntax. (This notation implies that the enclosed syntax is optional, since
zero repetitions of a syntax is optional usage.)

■ A vertical bar (|) denotes separate choices of syntax.

■ Parentheses (()) denote grouping of syntax options.

The use of italics in a text reference to a WGL syntactical element indicates
higher-level BNF constructs. Such constructs are expanded to their full
definition in the BNF accompanying the reference. For example, references to
FormatDecl would appear in the appropriate BNF production as follows:

FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,” <TDSstate> } “]” “;”

User-defined identifiers, such as <TDSstate>, are defined in the “Glossary of
WGL Terminology” on page 6-140.

NOTE
Do not confuse the BNF use of such typographical symbols as braces
({ }) with WGL’s use of the same symbol. BNF uses braces to
show a repetition of the action enclosed within the braces, while WGL
uses braces to mark database annotations.

Comments
As in other programming languages, you can add explanatory comments to a
WGL program to aid functional clarity. These comments are preceded by the

Waveform Generation Language

6-6 Getting Started, Vol. I, R8.1

pound sign (#), and are not included in the WDB when the WGL In
Converter is run.

Comments can be inserted into any part of a WGL program except WGL
annotations.1 (See “Annotations” on page 6-66.) To insert a comment into a
WGL program, enter a pound sign (#), followed by a text string. All
characters on the line, starting with the pound sign and the terminating with
the carriage return marking the end of the line, are included in the comment.

A complete BNF syntactical representation of the Comment feature follows.

Comment ::= “#” <any explanatory text> <end-of-line>

Example of WGL comments in a WGL program:

Start Example

Signal block
signal

clk: input; # system clock
dataReady: output;
in: input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus

End Example

end

Identifiers
An identifier is the alphanumeric name of a signal, bus, group, TimePlate,
format, timing generator, pattern, subroutine, et cetera. Identifiers must
begin with an alphabetic character, and may not contain white space (such as

1. The binary pattern file cannot have comments, only annotations.

Getting Started, Vol. I, R8.1 6-7

Waveform Generation Language

blanks, tabs,and newline characters) or any of the following delimiting
characters:

Identifiers must not conflict with any of the WGL reserved words. Any names
that contain special characters or reserved words must be entered as a string
surrounded by double quotation marks (“ ”).

In the WGL syntax descriptions in this chapter, identifiers are enclosed in
angle brackets (< >).

Numbers
Unless noted otherwise, user-defined numeric values are integers that range
from zero to the maximum integer that can be represented on your system’s
architecture. Any exceptions are noted in the appropriate WGL syntax
description section of this chapter.

In the WGL syntax descriptions in this chapter, user-defined numeric values
are enclosed in angle brackets (< >).

Reserved Words
WGL reserves certain words as its linguistic set, from which data descriptions
and procedural instructions can be synthesized. These reserved words can
appear only in WGL statements in the correct syntax.

(pound sign)
{ (left brace)
} (right brace)
“ (left double quotation marks)
” (right double quotation marks)
.. (double periods)
((left parenthesis)
) (right parenthesis)

+ (plus sign)
, (comma)
: (colon)
; (semi-colon)
[(left bracket)
] (right bracket)
. (period)

Waveform Generation Language

6-8 Getting Started, Vol. I, R8.1

The following list shows the WGL reserved words:

Unlike conventional programming languages, WGL cannot restrict or filter
the use of reserved words. If a design has a signal name (or any other
application-specific name) that conflicts with any of the WGL reserved words,
the signal name must be enclosed by double quotation marks (“ ”) to
differentiate the signal name from the reserved word. This must be done
throughout the program wherever the signal name occurs.

Strings
Strings are any sequence of characters surrounded by double quotation marks
(“ ”). Within a string, if you want to use double quotation marks, you must
precede each occurrence with a back slash (\). If you want to use a back slash
within a string, you must precede each occurrence with a back slash. For
example, the string:

\design“1”\

The equivalent WGL syntax is:

“\\design\“1\”\\”

atepin
bidir
binary
boolean
call
channel
compare
decimal
direction
dont_care
dutpin
edge
end
equationdefault

s
equationsheet
event
exprset
feedback
for
force
force_or_z
format
hex
hexadecimal
i
in
initialp

input
integer
last_drive
last_force
loop
ms
mux
ns
o
octal
out
output
pattern
period

pingroup
pmode
procedure
ps
radix
reference
registe
repeat
scan
scancell
scanchain
scanstate
signal
skip

subroutine
symbolic
tg
time
timegen
timeplate
timeset
timing
to
us
vector
wavedata
waveform
when
window

Getting Started, Vol. I, R8.1 6-9

Waveform Generation Language

WGL Syntax
WGL is a block-structured language. The body of the WGL program comprises
one large structure, bracketed by opening and closing statements. Within the
overall structure are smaller, more specialized structures, or blocks, each
bracketed by opening and closing statements.

A discussion of WGL’s syntactic elements follows.

General Syntax
In its simplest form, a WGL source file uses the following syntax:

waveform <waveFormName>
{ WaveformBlocks }
end

Valid syntax for the optional WaveformBlocks is any of sixteen program
sections. These sections are referred to as WGL programming blocks or blocks.
The block names are:

The block names act as block identifiers that categorize the information in
each of the program blocks used. The blocks are optional and can occur in any
order, subject to the restriction that all items in a block must be defined before
they are used, and a pattern block must be defined before a subroutine that
uses it is defined. It is possible to create an empty WDB, a WDB with only
signals defined, a WDB with signals and timing defined, a WDB with only
signals and patterns defined, or a WDB with all components defined (as
represented by inclusion of all program blocks describing WDB objects).

EquationDefaults
EquationSheet
Formats
GlobalMode
Patterns
Pin Groups
Registers
ScanCells
ScanChain
ScanState

Signals
Subroutines
Symbolics
TimeGens
TimePlates
TimingSets

Waveform Generation Language

6-10 Getting Started, Vol. I, R8.1

A high-level BNF syntactical representation of the WGL program follows:

WaveformProgram ::= “waveform” <waveFormName> [“()”]
{ WaveformBlocks } “end”

WaveformBlocks ::= (EquationSheet | EquationDefaults | GlobalMode |
Formats |TimeGens | PinGroups | Signals |
TimingSets | Registers | TimePlates | Symbolics | Patterns |
Subroutines | ScanCells | ScanChain | ScanState)

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

Formats ::= “format” { FormatDecl } “end”

TimeGens ::= “timegen” { TgDecl } “end”

PinGroups := “pingroup” { PinGroupDecl } “end”

Signals ::= “signal” { SignalDecl } “end”

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

Registers ::= “register” “(” PinList “)” { RegisterDecl } “end”

TimePlates ::= “timeplate” <timeplateName> TimePlate “end”

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix
SymbolicAssignment “end”

Patterns ::= “pattern” <patternName> “(” PatternParameters “)”
PatternRows “end”

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanChain ::= “scanChain” { ChainDecl } “end”

ScanState ::= “scanState” { ScanStateDecl } “end”

Getting Started, Vol. I, R8.1 6-11

Waveform Generation Language

An example of a typical WGL program is:

Start Example

waveform generic
signal

CS_ENABLE : input
dutpin[P1:1]
atepin[CSENAB:1];

A-BUS [15..0] : input
radix hexadecimal
dutpin[P2:2, P3:3, P4:4, P5:5, P6:6,
P7:7, P8:8, P9:9, P10:10, P11:11,
P12:12, P13:13, P14:14, P15:15, P16:16,
P17:17]
atepin[ABUS15:2, ABUS14:3, ABUS13:4, ABUS12:5,
ABUS11:6, ABUS10:7, ABUS9:8, ABUS8:9, ABUS7:10,
ABUS6:11, ABUS5:12, ABUS4:13, ABUS3:14, ABUS2:15,
ABUS1:16, ABUS0:17];

LOAD : input
dutpin[P18:18]
atepin[LOAD:18];

. . .

. end

timeplate Fetch period 300nS
CS_ENABLE := input[0pS:P, 30nS:S];
A-BUS := input[0pS:D, 120nS:S, 260nS:D];
LOAD := input[0pS:P, 100nS:S];
ENP := input[0pS:P, 50nS:S];
DR := input[0pS:P, 100nS:S];
RO := input[0pS:U, 70nS:S, 180nS:U];
D-BUS := output[0pS:X, 100nS:Q, 250nS:X];
DB-BUS := output[0pS:X, 100nS:Q, 250nS:X];
AD-BUS := input[0pS:P, 100nS:S];

end
timeplate R_W period 200nS

CS_ENABLE := input[0pS:P, 30nS:S];
A-BUS := input[0pS:D, 60nS:S, 190nS:D];
LOAD := input[0pS:S];
ENP := input[0pS:S];
DR := input[0pS:S];
RO := input[0pS:U, 40nS:S, 180nS:U];
D-BUS := output[0pS:X, 60nS:Q, 190nS:X];
DB-BUS := output[0pS:X, 40nS:Q, 180nS:X];

Waveform Generation Language

6-12 Getting Started, Vol. I, R8.1

AD-BUS := input[0pS:P, 60nS:S];
end

. . .

symbolic DB-BUS input radix hexadecimal
RESET := [1ED8];
JMP := [BE43];
LDA := [062D];

end
symbolic DB-BUS output radix binary
end

pattern group_ALL (CS_ENABLE,A-BUS,LOAD,ENP,DR,RO,D-BUS,DB-BUS:I,DB-BUS:O,
AD-B S:I,AD-BUS:O)

repeat 5
vector(0, 0pS, Startup) := [1 FFFF 0 0 0 1 3D66 RESET ---------------- AD --];

{ This is the COMMENT for the first row. This STARTUP TimePlate allows the tester
to start ALL stimulus at the LOW state, and initializes the device.}

vector(5, 2.5uS, Fetch) := [1 ADBB 0 0 1 0 3CDA ---- 0011111000000100 BB --];

{ During the FETCH cycle, the address on the A-Bus is “fetched” and will be valid
(displayed) on the D-Bus until after the next FETCH cycle.}

vector(6, 2.8uS, R_W) := [0 0C13 1 0 1 1 ADBB ---- 0010100100101101 84 --];
vector(7, 3uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];

{ The WRITE cycle contains “mid-cycle I/O” on the DB-Bus.}
vector(8, 3.4uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];
vector(9, 3.7uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];

call sub1();
vector(16, 5.7uS, Write) := [0 8D18 0 1 0 0 ADBB JMP ---------------- -- 99];
vector(17, 6.1uS, Fetch) := [0 EF57 0 1 0 1 ADBB ---- 1100001001000100 98 --];
vector(18, 6.4uS, R_W) := [0 82DD 1 0 1 0 EF57 ---- 0110000001110101 7B --];
vector(19, 6.6uS, Write) := [0 2927 1 1 0 0 AA03 LDA ---------------- -- 81];
vector(20, 7uS, Fetch) := [0 84F5 0 1 1 1 AA03 ---- 0100000110110111 A4 --];
vector(21, 7.3uS, R_W) := [1 8DB4 1 0 1 1 84F5 ---- 1100001100010001 97 --];

call sub1();
vector(28, 9.3uS, Write) := [0 7306 1 1 0 0 84F5 00DF ---------------- -- 17];

. . .

vector(107, 33.1uS, Fetch) := [0 9DF1 1 1 0 1 140F ---- 0010100101000010 98 --];
{ This is the LAST vector row}

end

Getting Started, Vol. I, R8.1 6-13

Waveform Generation Language

subroutine sub1()
vector(0, 0pS, Write) := [1 59E7 1 0 1 1 EF57 5FC9 ---------------- -- 65];
vector(1, 400nS, Fetch) := [0 E327 0 0 0 0 EF57 ---- 0111100101000100 BF --];
vector(2, 700nS, R_W) := [0 28E7 1 0 1 1 E327 ---- 1101001110000110 CA --];
vector(3, 900nS, Write) := [1 898B 1 1 0 1 E327 5F8B ---------------- -- A0];
vector(4, 1.3uS, Fetch) := [1 AA03 0 0 0 1 E327 ---- 1001111010101101 83 --];
vector(5, 1.6uS, R_W) := [0 1ECD 1 0 1 0 AA03 ---- 0010001101010101 23 --];
end

End Example

end

Waveform Generation Language

6-14 Getting Started, Vol. I, R8.1

Program Block Syntax
All WGL program blocks begin with one of the WGL reserved word block
names, and terminate with the reserved word end. Between these two
delimiting reserved words are one or more WGL statements used to define
data. These WGL statements themselves are subdivided into smaller
structures that address more specific operations, such as setting timing for
individual signal channels.

A colon (:) is used to assign an attribute (such as force or input) to an
identifier. A colon-and-equivalence (:=) is used as an assignment operator,
assigning a value (such as a numeric value) to an identifier. See the previous
example of a typical WGL program for these usages.

In permitted instances commas and semi-colons are used as delimiters. When
several parameters occupy the same line, each entry may be delimited by a
comma (,). Each separate WGL statement must be delimited by a semicolon
(;). Check the BNF notation for each WGL block for details of permissible
usages. See the WGL program example on page 6-11.

Generally speaking, the WGL blocks are of three types: generic,
tester-specific, and equation-specific.

The generic blocks let you address data that are related to the test waveforms.

The tester-specific blocks allow you to specify WDB data values that are
directly related to the type of tester you are using.

The equation-specific blocks let you assign expressions and constant values to
variables that can later be used in place of time values in timing sets and
TimePlates. The results of these equations are then included in the test
program you can generate using a TDS WaveBridge module.

While it is useful to consider the WGL blocks in these three general
categories, it is important to remember that some blocks contain generic,
tester-specific, and equation-specific components. For example, Signals blocks
and TimePlates blocks contain both generic and tester-specific WGL
statements. TimePlate blocks and TimingSet blocks contain generic,
tester-specific, and equation-specific WGL statements.

Getting Started, Vol. I, R8.1 6-15

Waveform Generation Language

Table 1 defines the block type of each of the sixteen WGL program blocks.1

Generic Program Blocks
This section discusses the specific syntax for each of the generic program
blocks. The following list shows the WGL generic program blocks:

1. WGL constructs supporting equations are preserved in the WDB only if you have a TDS
WaveBridge that includes equation support for your tester.

Table 1. WGL program block types

WGL Program Block Type

EquationDefaults equation-specific

EquationSheet equation-specific

Formats tester-specific

GlobalMode generic

Patterns generic

Pin Groups tester-specific

Registers tester-specific

Scan Cells generic

Scan Chain generic

Scan State generic

Signals generic, tester-specific

Subroutines generic

Symbolics generic

TimeGens tester-specific

TimePlates generic, tester-specific, equation-specific

TimingSets tester-specific, equation-specific

Signals
Scan Cells
Scan State
Scan Chain

TimePlates
Patterns
Subroutines
Symbolics

Waveform Generation Language

6-16 Getting Started, Vol. I, R8.1

Use the generic program blocks to define WDB objects that are not specific to
any tester. The generic program blocks are presented in the likely order of use
when creating a WDB.

Signals

The Signals block is used to declare four types of signal definitions: single-bit
signals, multi-bit buses, groups, and multiplexed signals or buses. Groups
may include signals, buses, or other groups.

The syntax of the WGL Signals block is:

signal
SignalDecl
end

A complete BNF syntactical representation of the Signals block follows:

Signals ::= “signal” { SignalDecl } “end”

SignalDecl ::= <signalName> [BusOrGroup] [“:” SignalAttributes]
[Pstate] “;”

BusOrGroup ::= (BusRange | GroupMembers | MuxMembers)

BusRange ::= “[” <bitNumber> “..” <bitNumber> “]”

GroupMembers ::= “[” [SignalReference { “,” SignalReference }] “]”

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

MuxMembers ::= [MuxPartList] [Range]

MuxPartList ::= “[” <muxPartName> “,” <muxPartName> [{ “,”
<muxPartName> }] “]”

SignalAttributes ::= ([“mux”] [Direction]) { Strobe } [Radix] [DutPins]
[AtePins]

Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

Strobe ::= (“in” | “out”) “when” “[” <validityClause> “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” |

Getting Started, Vol. I, R8.1 6-17

Waveform Generation Language

“symbolic”)

DutPins ::= “dutpin” “[” DutPinGroup { “,” DutPinGroup } “]”

DutPinGroup ::= (PinInfo | “(” PinInfo { “,” PinInfo } “)”)

PinInfo ::= PinName| PinNumber

PinName ::= <pinName> [PinNumber]

PinNumber ::= “:” <pinNumber>

AtePins ::= “atepin” “[” AtePinGroup { “,” AtePinGroup } “]”

AtePinGroup ::= (AtePinInfo | “(” AtePinInfo { “,” AtePinInfo } “)”)

AtePinInfo ::= PinInfo [“tg” “[” <timeGenName> { “,” <timeGenName> } “]”]

Pstate ::= “initialp” “[” <TDSstate> “]”

The SignalDecl begins with a user-defined identifier or string. The SignalDecl
can be any of four types:

■ single-bit signals

■ multi-bit buses

■ groups of signals, buses, or other groups

■ multiplexed signals or buses

Single-Bit Signals

Single-bit signals are defined by an identifier followed by a list of attributes.
The following is an example of a WGL Signals block with only single-bit
signals defined.

Waveform Generation Language

6-18 Getting Started, Vol. I, R8.1

Start Example

signal
clk : input;
dataReady: output;
in_1 : input;
readWrite: bidir;

End Example

end

Buses

Buses are defined by an identifier followed by the range of the bus, enclosed in
brackets ([]). The total, combined number of single-bit signals and buses that
can be defined is limited to 16384.

The following is an example of a WGL Signals block with single-bit signals
and buses defined.

Start Example

signal
clk : input; # system clock
dataReady: output;
in_1 : input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus

End Example

end

Groups

Groups are defined by a list of previously defined single-bit signals, buses, bus
members, or other groups. Groups can name single-bit signals, buses, bus
members, or groups only once in the list. The number of groups used does not
contribute to the combined total of 16384.

The following is an example of a WGL Signals block with single-bit signals,
buses, and groups defined:

Getting Started, Vol. I, R8.1 6-19

Waveform Generation Language

Start Example

signal
clk : input; # system clock
dataReady: output;
in_1 : input;
readWrite: bidir;
data [0..31]: bidir; # 32-bit data bus
addr [0..15]: input; # 16-bit address bus
busses [data, addr]; # both busses together
data0_8 [data[0..8]];
oddAddr [addr[1], addr[3], addr[5], addr[7]];
inputs [clk, in];

End Example

end

There are predefined groups available that you can use in any correct syntax
for groups. The predefined group names must be entered as upper-case
characters, as shown. They are:

ALL

This predefined group contains all signals, buses, and multiplexed signals
and buses (but not multiplexed parts). Groups are not included.

ALLINPUT

This predefined group contains all signals, buses, and multiplexed signals
and buses (but not multiplexed parts) with the input signal direction
attribute.

 ALLOUTPUT

This predefined group contains all signals, buses, and multiplexed signals
and buses (but not multiplexed parts) with the output signal direction
attribute.

ALLBIDIR

This predefined group contains all signals, buses, and multiplexed signals
and buses (but not multiplexed parts) with the bidir (bidirectional) signal
direction attribute.

Waveform Generation Language

6-20 Getting Started, Vol. I, R8.1

ALLMUX

This predefined group contains all multiplexed signals and multiplexed
buses (but not multiplexed parts) with the mux (multiplexed) signal
attribute.

There is no limit to the number of groups that can be defined.

Multiplexed Signals or Buses

Multiplexed signals are defined by an identifier followed by a list of
multiplexed parts, enclosed in brackets ([]); multiplexed buses are defined
by an identifier followed by a list of multiplexed parts, enclosed in brackets
([]), and followed by the Range, which is also enclosed within brackets ([]).

Do not confuse multiplexed parts (<muxPartName>s) with signals;
multiplexed parts describe the ATE resources used to supply pattern data to a
multiplexed signal or bus. Multiplexed parts function in much the same
manner as signals in the TimePlates, carrying timing parameters and pattern
data that is eventually associated with a multiplexed signal defined in the
Signals block.

An example of a WGL Signals block with definitions of a multiplexed signal, a
single-bit signal, and a multiplexed bus follows. Note the use of the mux
attribute:

Start Example

signal
fastClock [edge1, edge2]:mux input; # Multiplexed parts edge1,

edge2 on multiplexed
signal fastClock

rd/_wr :output;
Databus [bus1, bus2] [0..31]:mux bidir; # Multiplexed parts bus1,

bus2 on multiplexed
bus Databus

End Example

end

When waveforms are more complicated than those supported by the target
tester’s formatting set, multiplexed signals and buses are typically used to
generate test programs that contain pin multiplexing for these complicated
waveforms. By using this ability, you can multiply the effective frequency of

Getting Started, Vol. I, R8.1 6-21

Waveform Generation Language

the tester. If multiple pattern bits are needed to define a waveform (for
example, multiple pulses in a single tester cycle), you should define such
signals or buses as multiplexed signals or buses.

Following the optional BusOrGroup syntax are other attributes that are
associated with the current signal declaration. If you are defining a group,
only the radix attribute is applicable.

atepin

ATE pin information is defined in the Signals block using the reserved
word atepin. The AtePinInfo syntax is used to describe the mapping of the
current signal declaration to tester pins and the binding between a tester
pin and its timing generators. The atepin value is an alphanumeric string.
When multiple ATE pins are specified for a multi-bit bus, the mapping is
one-to-one unless parentheses are used to group two or more pin
declarations with a single signal.

ATE timing generator information is also defined in the signals block. The
timing generator binding is introduced with the reserved word tg. The
tgName is the name of the tester-specific timing generator that is
generating the timing for all the edges of the signals in the current signal
declaration. Multiple tgNames indicate that the timing generators are
being multiplexed or the existing timing generators (defined in a TimeGens
block) are responsible for multiple edges.

NOTE
Pin information and timing generator information are both
tester-specific

The following is an example of a WGL Signals block with dutpin and atepin
attributes defined:

Waveform Generation Language

6-22 Getting Started, Vol. I, R8.1

Start Example

signal
clk : input dutpin [c:p1] atepin [fclock:123 tg [ACLK1]];
dr : input dutpin [r:p2] atepin [p124:124 tg [BCLK1,

CCLK1]];
data: output dutpin [d:p3] atepin [p2:2 tg [STRB1]];

End Example

end

direction

The direction attribute describes the direction of a signal and controls how
the signal is used in test program generation.

A signal may be forcing (input), sensing (output), or both forcing and
sensing at different times (bidir); the default is input. A direction may not
be specified for groups. If a bus has a direction of input or output, all the
bits of the bus must have the same direction; otherwise, only bidir is legal.

To control how the signal is used in test program generation, you can
choose either reference or timing. If neither of these is specified, the signal
is considered in TimePlate matching and tester program generation. If the
clause is used with timing specified, the signal is considered in TimePlate
binding but not in test program generation. If reference is specified, the
signal is not considered in either TimePlate binding or test program
generation. When this clause is used, complete WGL syntax is still
required for the signal (signal, TimePlate track, and data).

The following is an example of a WGL Signals block with signals I1 and I3
use restricted:

Start Example

signal
I1 : input reference;
I2 : input;
I3 : input timing;
. . .

End Example

end

Getting Started, Vol. I, R8.1 6-23

Waveform Generation Language

Strobe Clause

Signals and buses may have optional strobe clauses following the
direction attribute. Use this clause to specify that an input or output
signal is valid only when another signal takes a certain value. The
strobe clause uses the reserved word when to specify the condition to be
met. This clause can also specify when a bidir signal has input direction
and when it has output direction.

The <validityClause> portion of the construct must meet the syntax
requirements of the TDS Signal Definition file. (See the “User-Defined
Files” chapter, found in this guide, for details on the Signal Definition
file.)

The following is an example of a WGL Signals block with strobe clause for
signals dr and data:

Start Example

signal
cntrl : input;
dr : bidir in when [cntrl D] out when [cntrl U];
data[7..0]: output out when [cntrl D];

End Example

end

dutpin

The dutpin attribute specifies the names (and optional numbers) of the
pins on the device-under-test associated with the signal. The dutpin value
is an alphanumeric string. If a device has multiple pins dedicated to the
same signal, or different pins in use when a bidirectional signal is input or
output, more than one pin may be specified. dutpin may not be specified for
groups.

If multiple pins are specified in a multi-bit bus declaration, the mapping is
assumed to be one-to-one between the bus elements and the pins, in a
left-to-right, most-significant-pin to least-significant-pin order. Other
distributions of pins to signals (such as that required for multiplexed pins)
can be accomplished by grouping the pin declarations within parentheses.
This indicates that multiple pins are bound to single-bit bus member.

Waveform Generation Language

6-24 Getting Started, Vol. I, R8.1

The following is an example of a WGL Signals block with dutpin attribute
defined:

Start Example

signal
clk : input dutpin [c:1];
data[0..7]: bidir

dutpin [(d0i, d0o), (d1i, d1o), (d2i, d2o), (d3i, d3o),
(d4i, d4o), (d5i, d5o), (d6i, d6o), (d7i, d70)];

End Example

end

mux

The mux attribute defines a signal or bus as a multiplexed signal or bus.
The signal or bus receives pattern data from a list of multiplexed parts. If
the multiplexed parts are themselves buses, these buses must be followed
by the range of the bus enclosed in brackets ([]).

The names of the multiplexed parts must be identified for the first time in
the current signal definition; it is illegal to use the names of other signals,
groups, or buses that have been previously defined in the Signals block of
the WGL file.

See page 6-20 for an example of the use of the mux attribute.

initialp

Each signal definition may have an optional initialp state specified. P
states are resolved to this state the first cycle of the waveform. Any legal
TDS state may be specified. If the initialp clause is omitted, the default is
D (FORCE_LO). initialp may not be specified for groups.

The following is an example of a WGL Signals block with initialp specified for
signals clk and bus:

Getting Started, Vol. I, R8.1 6-25

Waveform Generation Language

Start Example

signal
clk : input initialp[U];
bus[0..7]: output initialp[X];

End Example

end

Radix

The radix attribute describes the base in which the pattern data for the bus
is described in the Patterns block. The radix attribute can be binary,
hexadecimal, octal, decimal, or symbolic. Only binary and symbolic
are legal for single-bit signals. The default radix is binary when the radix
attribute is unspecified.

symbolic radix indicates that identifiers defined in subsequent symbolic
blocks may be used in pattern vectors. Decimal radix may only be specified
for buses and groups with 32 or fewer scalar member signals.

NOTE
Legal binary pattern characters are 1, 0, Z, X, and -; if you specify a
non-binary radix (hexadecimal, decimal, octal, symbolic) in the WGL
file, and edit the WDB using the WaveMaker Pattern Editor, do not
use the 1 or 0 binary pattern characters in conjunction with the Z, X,
or - characters. Since the X, Z, or - characters represent an
ambiguous data bit, the pattern data for the entire digit (four bits for
hexadecimal, three bits for octal, one or two bits for decimal, or n bits
for symbolic) is discarded and replaced with a question mark (?). If
all the bits are Z, the hexadecimal or octal digit is replaced with Z. If
all the bits are X, the hexadecimal or octal digit is replaced with X.

Scan Cells

The Scan Cells block is used to represent internal storage registers of a device
that may be loaded or observed using serial shift scan circuitry. The total
number of scan cells allowed in a single WGL In file is limited to 32767.

It is important to distinguish scan cells from signals. WDB stores continuous
waveform information for signals. Scan cells, however, can represent only logic

Waveform Generation Language

6-26 Getting Started, Vol. I, R8.1

states at particular instants. Scan cells do not have direction and there is no
direct association with ATE or DUT pins. Scan cells cannot be referenced in
TimePlates or pattern parameter lists.

The syntax of the WGL Scan Cells block is:

scancell
ScanCellDecl
end

A complete BNF syntactical representation of the Scan Cells block follows:

ScanCells ::= “scanCell” { ScanCellDecl } “end”

ScanCellDecl ::= <cellName> [ScanGroup] [“:” Radix] “;”

ScanGroup ::= “[” [ScanRange | ScanGroupMembers] “]”

ScanRange ::= <bitNumber> “..” <bitNumber>

ScanGroupMembers ::= CellReference { “,” CellReference }

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” |
“symbolic”)

The ScanGroup statement allows you to specify a logical grouping of scan
cells. The scan cells in a group may be from multiple scan chains. Each
ScanGroupMember must be previously defined, unless it is the name of
another scan group.

The optional Radix specification for scan groups and registers is used in scan
state vectors. The supported radices are implemented by using the WGL
reserved words: binary, hex, octal, decimal, and symbolic.

An example of a ScanCells block is:

Getting Started, Vol. I, R8.1 6-27

Waveform Generation Language

Start Example

scancell
latchA;
latchB;
datareg[0..7]: radix hexadecimal;
group_1[latchA, latchB, datareg[7]]: radix octal;

End Example

end

The Scan Cells block example names scan-able cells within the device. Cells
may be single-bit latches, such as latchA, or multi-bit registers, such as
datareg. Logical groups of scan cells, such as group_1, also may be specified.

A complete example of WGL scan structures is provided on page 6-102 of this
chapter.

Scan State

Each state declaration in a Scan State block defines the entire state of the set
of all scan cells at some instant in time. The goal of input scanning is to
achieve that state; the goal of output scanning is to observe that state. A scan
state vector may be referenced from zero or more scan pattern rows. It may
take multiple scan chains to load or observe all the cells in a state.

A binary format of the scan vectors is supported. See “Binary WGL” on
page 6-108. This capability allows you to use binary data from a CAE
simulation as input to TDS.

The syntax of the WGL Scan State block is:

scanstate
ScanStateDecl
end

A complete BNF syntactical representation of the Scan State block follows:

ScanState ::= “scanState” { ScanStateDecl } “end”

ScanStateDecl ::= <stateName> “:=” { StateVectorElement } “;”

StateVectorElement ::= <chainName> “(“ { <stateString> } “)”

Waveform Generation Language

6-28 Getting Started, Vol. I, R8.1

The ScanStateDecl specifies a name for the scan state and the values of all the
scan cells for that state. The <stateName> is an identifier; some special
characters may be used if the <stateName> is enclosed within double
quotation marks (“ ”). <stateNames> occupy their own name space but must
be unique among all other states. The StateVectorElements are assigned by
naming the cell, register, cell group, or chain and appending a <stateString>
value in parentheses. The <stateString> is interpreted in the radix of the
associated cell reference similar to the technique used for pattern states. The
WGL Out Converter always generates state vectors using ALLSCAN as the
only cell reference. The <chainName> is an identifier and must be unique
among all other scan chain names.

The value of any cell not specified in the scan state declaration is implicitly X,
the TDS state character representing a compare unknown state. The actual
value used by a tester to drive X is technology-dependent and programmed in
TDS Test Control Language (TCL). If that portion of the state is scanned out,
the comparison is masked. For more information on how to use TCL, see the
“Test Control Language” chapter, found in this guide.

Legal characters in the stateString are 0, 1, Z, and X for binary radix, 0-9, A-F,
Z, and X for hexadecimal radix, 0-7, Z, and X for octal radix, and 0-9 for
decimal radix.

The following is an example of a Scan State block. The bit order of the scan
group ALLSCAN is the order that the scan cells (and scan registers) are defined
in the Scan Cell block of the WGL file.

Start Example

scanState
state1 := latchA(1) latchB(0) datareg(3F);
state2 := latchA(0) latchB(1) datareg(01);
state3 := ALLSCAN(XX00000000);
stateX := ;

End Example

end

The stateX state declaration in this example sets up a state of all X (compare
unknown) values.

A complete example of WGL scan structures is provided on page 6-102 of this
chapter.

Getting Started, Vol. I, R8.1 6-29

Waveform Generation Language

Scan Chain

The Scan Chain block defines the configuration of a circuit path connecting
edge signals to scan cells and inverters. Each chain is named with an
identifier or quoted string that must be unique among signals, scan cells,
buses, scan registers, groups, and other scan chains.

The syntax of the WGL Scan Chain block is:

scanchain
ChainDecl
end

A complete BNF syntactical representation of the Scan Chain block follows:

ScanChain ::= “scanChain” { ChainDecl } “end”

ChainDecl ::= <chainName> “[” ChainMembers “]” [“:” Radix] “;”

ChainMembers ::= (OutEdgeSignalOnly | ChainMemList)

OutEdgeSignalOnly ::= “, ” ChainMemReference

ChainMemList ::= ChainMemReference { “ , ” ChainMemReference }

ChainMemReference ::= (CellReference | “!”)

CellReference ::= (<cellName> [Range])

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” |
“symbolic”)

The <chainName> is an identifier and must be unique among all other scan
chain names.

The ChainMembers list represents the ordered sequence of scan chain
elements where the implied shift direction is left-to-right. When signal names
appear in a ChainMembers list, the signal names must be the first or last
entry in the list.

A signal name appearing at the start of the chain must have been declared
input or bidirectional. A signal appearing at the end must have been output or

Waveform Generation Language

6-30 Getting Started, Vol. I, R8.1

bidirectional. The reserved symbol ! indicates state inversion. Scan chains
may be members of other chains as long as the declaration is not recursive.

Either the input edge signal or the output edge signal can be omitted, but if
the chain is directly referenced by a scan pattern row, at least one must be
present.

If the Radix is omitted, binary radix is supplied by default.

An example of a Scan Chain block is:

Start Example

scanchain
chain1 [SC1_IN, datareg[0], latchA, datareg[2], SC1_OUT] : radix octal;
chain2 [SC2_IN, datareg[1], !, datareg[7], datareg[5], latchB,
datareg[4], !, datareg[6]];

End Example

end

The Scan Chain block example shows the order of scan cells on two physical
chains. The first and last elements of the chain1 cell list are the names of
edge signals SC1_IN and SC1_OUT, which must have been defined previously
in a Signals block. chain2 has an input signal SC2_IN but no corresponding
output signal. Therefore, chain2 may be used to control the state of the listed
scan cells but there is no way to observe their state. The reserved symbol !
appears twice in the chain2 cell list. This indicates that states are inverted
when they shift between datareg[1] and datareg[7], and between
datareg[4] and datareg[6].

Parallel scan chains are supported, but the scan chains can not be identical.
The following is an example of the legal use of parallel scan chains.

Getting Started, Vol. I, R8.1 6-31

Waveform Generation Language

Start Example

waveform t1
scancell

latch1; latch2; latch3; latch4;
latch5; latch6; latch7; latch8;

end
scanstate

state1 := latch1(0) latch2(0) latch3(0) latch4(0);
state2 := latch1(0) latch2(0) latch3(0) latch4(1);
state3 := latch1(0) latch2(0) latch3(1) latch4(1);
state4 := latch1(0) latch2(1) latch3(0) latch4(0);
state5 := latch1(0) latch2(1) latch3(0) latch4(1);

estate1 := latch5(1) latch6(1) latch7(1) latch8(0);
estate2 := latch5(1) latch6(1) latch7(0) latch8(1);
estate3 := latch5(1) latch6(1) latch7(0) latch8(0);
estate4 := latch5(1) latch6(0) latch7(1) latch8(1);
estate5 := latch5(1) latch6(0) latch7(1) latch8(0);
estateX := ;

end
signal

clock : input;
scanIO : bidir;
scanOut : output;
enable : input;

end
scanChain

chain1 [scanIO, latch1, latch2, latch3, latch4];
chain3 [latch1, latch2, latch3, latch4, scanIO];
chain2 [latch5, latch6, latch7, latch8, scanOut];

end

timeplate scanTiming period 200ns
clock := input [0ps:D, 50ns:S, 100ns:D];
enable := input [0ps:S];
scanIO := input [0ps:S];
scanIO := output [0ps:X, 50ns:Q];
scanOut := output [0ps:X, 50ns:Q, 90ns:X];

end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state1],

output[chain3:estate1];
 vector(+, scanTiming):=[1 1 1 - X];

Waveform Generation Language

6-32 Getting Started, Vol. I, R8.1

 scan(+,scanTiming):=[1 1 - - -], input[chain1:state2],
output[chain2:estate2];

 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state3],

output[chain2:estate3];
 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state4],

output[chain2:estate4];
 vector(+, scanTiming):=[1 1 1 - X];
 scan(+,scanTiming):=[1 1 - - -], input[chain1:state5],

output[chain2:estate5];
end

End Example

end

A complete example of WGL scan structures is provided on page 6-102 of this
chapter.

TimePlates

The TimePlates block is used to define the timing component of the
waveforms. The TimePlates convey the unique kinds of timing that are
present in the overall waveforms.

The syntax of the WGL TimePlate block is:

timeplate <timeplateName>
TimePlate
end

A complete BNF syntactical representation of the TimePlates block follows:

Timeplates ::= “timeplate” <timeplateName> TimePlate “end”

TimePlate ::= “period” TimeReference [“timeset” <tsNumber>] Channels

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

Channels ::= { SignalReference { “,” SignalReference } “:=” Track }

Getting Started, Vol. I, R8.1 6-33

Waveform Generation Language

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

Track ::= [Direction] [“[” FirstEvent { “,” Event } “]”] “;”

Direction ::= (“input” | “output” | “bidir”) [(“reference” | “timing”)]

FirstEvent ::= “0” Unit “:” <TDSstate> [“ ’ ” (“edge” | “window”)]

Event ::= TimeReference “:” <TDSstate> [“ ’ ” (“edge” | “window”)]

<timeplateName> is an identifier used to reference the TimePlate throughout
later portions of the WGL program. An overall timing period is assigned to
each TimePlate by the reserved word period. The TimePlate declaration is a
definition of the constituent parts of the TimePlate.

<variableName> is the name of a variable that has been previously defined in
the ExprSet sub-block of an EquationSheet block. (See “ExprSet” on
page 6-57.)

Each TimePlate is given an overall time period applying to the length of the
cycle following the reserved word period. The period can be a numeric value
greater than zero, or a variable having been previously defined in the ExprSet
sub-block of an EquationSheet block. (See “ExprSet” on page 6-57.)

NOTE
A variable used in the TimePlates block must have a value that is
meaningful when expressed in units of time.

A TimePlate contains a list of signal Channels. Each Channel can contain one
or more signals, buses, groups, or multiplexed parts. These entities must have
been previously declared in the Signals block. Each Channel associates the
signals with a Track. Conceptually, a Channel is a container for one or more
signal names, each of which is followed by a Track. The Track itself contains
the actual information about the shape and timing of the waveform, and its
Direction. The TDSstates that are used must be consistent with those
available for the direction of input or output. (See Table 7 on page 6-75 for a
list of TDS state characters.) All the signals that share the channel must also
have a compatible direction.

Waveform Generation Language

6-34 Getting Started, Vol. I, R8.1

NOTE
It is important to note that while multiplexed parts are permitted,
multiplexed signals or buses (those signals or buses tagged with the
mux attribute in the Signals block that receive their timing
parameters from multiplexed parts) are not permitted. In effect,
timing is defined for the multiplexed parts, which then supply data
for the multiplexed signal or bus with which they are associated in
the Signals block.

The first event in a Track must have a literal time value of 0. Timing supplied
by a variable is not legal for the first event. Subsequent events can use either
a literal time value or a variable to specify the timing of the event. A variable,
if used, must have been previously defined in the ExprSet sub-block of an
EquationSheet block. (See “ExprSet” on page 6-57.)

The reserved word timeset lets you define a tester-specific timing set name
that is associated with the timing in the TimePlate. The timing set is defined
in the WDB that is produced by a WaveBridge run.

The following is an example of a simple TimePlates block:

Start Example

timeplate read period 250ns timeset 1
clock := input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,

250ns:U];
in := input [0ps:D,170ns:U];
out := output [0ps:X,180ns:Q’edge, 220ns:X];

End Example

end

A bidirectional signal can occupy one channel if the direction is specified using
the reserved word bidir, or two channels if the direction is defined using both
of the reserved words input and output. In the first instance, the channel is
doing intra-cycle input/output switching; in the second instance, the channel
is doing inter-cycle input/output switching. These two can be combined to
make a maximum of three channels per signal.

Contained within each Track is a comma-separated list of events. Each event
consists of a time value defined by Time and a TDSstate. For input channels,
the TDS force logic state characters must be used; for output channels, TDS

Getting Started, Vol. I, R8.1 6-35

Waveform Generation Language

expect logic state characters must be used; for bidirectional channels, both
force and expect TDS state characters may be used. The TDS state character S
indicates that the actual state character is to be “substituted” into the
waveform at that point. The actual state character comes from the data bit in
the corresponding column in a pattern block. In other words, when Track
contains an S state character, the actual state is derived from the pattern
data. The TDS state character P indicates that the state is to be provided from
the previous state (from the previously juxtaposed template). The TDS state
character C indicates that the state is the complement of the substituted state.
See Table 7 on page 6-75 for a list of TDS logic state characters.

For output channels, the compare logic states must be used. The TDS state
character Q indicates that the state is to be substituted from the data bit from
the corresponding column in a pattern block. The TDS state character R
indicates that the state is the complement of the substituted state. The
optional reserved words edge or window (default) can follow an output state to
indicate edge or window strobing. During a WaveBridge run, the WaveBridge
resource allocation attempts to allocate the type of strobe specified by the
reserved word. (The example above uses the reserved word edge.)

An example of a typical TimePlates block, including the corresponding signal
definitions in the Signals block and the pattern data defined in the Patterns
block, follows. (Note the use of multiplexed buses.)

Start Example

signal
#===
FastClock is generated using eight multiplexed components.
Databus bus is made up of two separate busses, bus1 and bus2.
#===
FastClock[edge0, edge1, edge2, edge3, edge4, edge5, edge6, edge7]: mux input;
rd/_wr : output;
Databus[bus1, bus2][0..3] : mux bidir; # Multiplexed the two four bit

busses to get a byte-wide bus.
end

timeplate writeTP period 80ns
edge0: input[0ps:D, 2ns:U, 8ns:D, 10ns:?]; # Clock for data bit bus1[0]
edge1: input[0ps:?, 10ns:D, 12ns:U, 18ns:D, 20ns:?]; # Clock for data bit bus1[1]
edge2: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?]; # Clock for data bit bus1[2]
edge3: input[0ps:?, 30ns:D, 32ns:U, 38ns:D, 40ns:?]; # Clock for data bit bus1[3]
edge4: input[0ps:?, 40ns:D, 42ns:U, 48ns:D, 50ns:?]; # Clock for data bit bus2[0]

Waveform Generation Language

6-36 Getting Started, Vol. I, R8.1

edge5: input[0ps:?, 50ns:D, 52ns:U, 58ns:D, 60ns:?]; # Clock for data bit bus2[1]
edge6: input[0ps:?, 60ns:D, 62ns:U, 68ns:D, 70ns:?]; # Clock for data bit bus2[2]
edge7: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?]; # Clock for data bit bus2[3]
rd/_wr: input[0ps:?, 20ns:D, 80ns:?]; # Indicate write cycle

bus1[0]: input[0ps:D, 5ns:S, 10ns:?]; # Data bit 0
bus1[1]: input[0ps:?, 10ns:D, 15ns:S, 20ns:?];# Data bit 1
bus1[2]: input[0ps:?, 20ns:D, 25ns:S, 30ns:?];# Data bit 2
bus1[3]: input[0ps:?, 30ns:D, 35ns:S, 40ns:?];# Data bit 3
bus2[0]: input[0ps:?, 40ns:D, 45ns:S, 50ns:?]; # Data bit 4
bus2[1]: input[0ps:?, 50ns:D, 55ns:S, 60ns:?]; # Data bit 5
bus2[2]: input[0ps:?, 60ns:D, 65ns:S, 70ns:?]; # Data bit 6
bus2[3]: input[0ps:?, 70ns:D, 75ns:S, 80ns:?]; # Data bit 7

end

pattern load1(FastClock, rd/_wr, Databus)
 vector(+, writeTP) := (11111111 1 10101010XXXXXXXX);

End Example

end

You can see in the example that the multiplexed parts do not need be defined
as contiguous sections of the timing track; gaps in the defined timing for the
multiplexed parts are allowed to support the requirements of your particular
tester.

The multiplexed parts can occur in any order in the TimePlate block, as can
the timing defined in the timing track. For example, the timing for edge7 and
edge2 could legally be defined as:

edge2: input[0ps:?, 70ns:D, 72ns:U, 78ns:D, 80ns:?];
. . .
edge7: input[0ps:?, 20ns:D, 22ns:U, 28ns:D, 30ns:?];

As you can see, the timing values are in the reverse order of those shown in
the example.

The pattern data (11111111 1 10101010XXXXXXXX) is mapped to the
buses and signals as described in “Patterns” on page 6-38.

An edge strobe is an instruction to the tester comparator hardware to take an
instantaneous sample of the DUT output, and compare it with the expect
data. A window strobe tells the tester comparator hardware to verify that the
expect data is appearing at the DUT throughout a window of time. If neither

Getting Started, Vol. I, R8.1 6-37

Waveform Generation Language

reserved word is specified, the event is assumed by the WaveBridge you are
using to be a window strobe.

When defining a track, make sure that you assign increasing time values for
each event subsequently defined, whether using a constant time value or a
variable; the first event of the waveform must always begin at 0pS, and it is
unacceptable to define a second event at 20nS and a third event at 15nS.
Remember that all event times are relative to the beginning of the cycle.

TimePlates used with scan pattern rows must satisfy certain requirements.
Those signals that terminate scan chains referenced from the same pattern
row must have sample states; that is, signals that appear at the start of a scan
chain must have an S state character, and signals that appear at the end of a
scan chain must have a Q state character in their respective waveform shapes.
Any other state characters violate these restrictions, generating a TDS WDB
Checker Utility error message when you run the TDS WGL In Converter, or a
TDS Tester Rules Checker error message when you use the WDB containing
the TimePlate as input to a TDS ScanBridge module. Pattern values are
available, but not required, for other signals. For more information, see
“Patterns” on page 6-38.

The following is an example of a TimePlates block that can be used with scan
pattern rows:

Start Example

timeplate runSC period 500ns
SC1_IN := input[0pS:S, 250nS:D];
SC2_IN := input[0pS:S, 250nS:D];
SC1_OUT := output[0pS:X, 250nS:Q];
SC_CLOCK := input[0pS:U, 250nS:D];
SC_EN := input[0pS:U];
BUS_D := output[0pS:X];
ADDR_IN := input[0pS:P];

End Example

end

NOTE
In the above example, only signals containing TDS state characters
for unresolved states (such as S or Q) are scan signals (signals that
terminate scan chains).

Waveform Generation Language

6-38 Getting Started, Vol. I, R8.1

The TimePlates block example shows how to encode a protocol that exercises
both chain1 and chain2 in parallel. (Scan chains were previously defined in
the Scan Chain block example, on page 6-30.) A common scan clock SC_CLOCK
and enable pin SC_EN are shared by both chains. Inputs SC1_IN and SC2_IN
are driven during the first half of the cycle, and the output SC1_OUT is
sampled during the second half. Other input signals not associated with the
scan chain, such as ADDR_IN, are held at the “previous” value (that is, at the
value they held before the scan operation began). Non-scan outputs, such as
BUS_D, are masked. For more information, see the following “Patterns”
section.

You can use variables in the place of literal time values in the TimePlates
block. The variables must be previously defined in a default ExprSet sub-block
of an EquationSheet block. (See “ExprSet” on page 6-57.)

Variables can be substituted for the TimePlate period value and any event
time. You can intermix literal time values and variables, although the initial
event in a time track must occur at 0pS, and it must be expressed as a literal
time value.

The following example shows how variables that were defined in an
EquationSheet block can be used in a TimePlate block. The use of variables is
highlighted in bold typeface:

Start Example

timeplate ts1 period write_cycle
clk := input[0pS:D, 20nS:U, tclk1:D, 90nS:U];
ale := input[0pS:D, t1:S, t2:D];
RE := input[0pS:D, 20nS:S, 50nS:D];
OE := input[0pS:P, 30nS:S];
strobe := output[0pS:X, t3:Q, 90nS:X];

End Example

end

Patterns

The Patterns block is used to define rows of data bits. These rows are also
called vectors. The vectors defined in the Patterns block are to be modulated
through the TimePlate that is associated with each vector. The result of this
modulation creates the waveform.

Getting Started, Vol. I, R8.1 6-39

Waveform Generation Language

A binary format of the pattern vectors, to be used in place of ASCII pattern
data, is supported. See “Binary WGL” on page 6-108. This capability allows
you to use binary pattern data from a CAE simulation as input to TDS. You
cannot mix ASCII pattern vectors and binary pattern data within a Pattern
block. However, you can have an ASCII Pattern block and a binary Pattern
block within a WGL file.

The syntax of the WGL Patterns block is:

pattern <patternName> PatternParameters
PatternRows
end

A complete BNF syntactical representation of the Patterns block follows:

Patterns ::= “pattern” PattName “(” PatternParameters “)”
PatternRows “end”

PattName ::= (<patternName> | <patternNameStr>)

PatternParameters ::= PatternParam { “,” PatternParam }

PatternParam ::= SignalReference [“:” (“I” | “O”)]

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>
PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call | Offset)

Vector ::= “vector” Address “:=” PatternExpression [TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> | [Time] | <timeplateName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

Waveform Generation Language

6-40 Getting Started, Vol. I, R8.1

TimeComment ::= “(” Time “)”

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } “;”

ScanRowElement ::= (PatternExpression | ScanRun)

ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

Multiple Pattern blocks are allowed in WGL and are used to describe a way of
partitioning a test program into pattern bursts when the WDB is processed by
a WaveBridge.

<patternName> is a user-defined name such as Group_ALL.
<patternNameStr> is a user-defined name such as “Group+two”. (String
notation allows the use of characters not otherwise permitted.) The
<patternName> and <patternNameStr> user-defined names are stored in the
WDB.

The PatternExpression defined for each identifier must contain legal pattern
<stateString>s. The number of bits in the PatternExpression must be the
same as the number of bits in the corresponding signal, bus, group, or
multiplexed signal or bus that is associated with it.

PatternParameters is a parentheses-enclosed list of signal names that have
already been defined in the Signals block. The PatternParameters are used to
map signals, buses, groups, and multiplexed signals or buses (defined in the
Signals block) to columns in the PatternExpressions. If multiplexing is used
for signals or buses, the pattern bits are combined under the control of the
associated radix, in exactly the same manner that the pattern bits are
controlled for non-multiplexed buses. For multiplexed parts, the binding order
of the pattern bits is left-to-right as specified in the multiplexed signal
definition in the Signals block. Each PatternParam in the parameter list
corresponds in order of occurrence to columns of data in each vector
statement. See the TimePlate example on page 6-34.

Getting Started, Vol. I, R8.1 6-41

Waveform Generation Language

PatternRows are definitions of rows of data bits used to supply data to
waveforms when modulated through a TimePlate, as defined in the TimePlate
block.

The optional TimeComment provides a mechanism for binding a time to a
Vector. It is stored in the database as a comment only. (TDS Output Converters
may construct these from simulation output times.)

A Vector consists of an Address and an associated pattern expression. The
simplest form of an Address is an integer cycle number. A plus sign (+) can be
used as an address to automatically increment the cycle number from the
previous row. The starting time of the cycle may also appear in the address. If
a <timeplateName> is mentioned in an Address, it must reference an existing
TimePlate.

All fields of an Address except the TimePlate designation (+, <cycleNumber>,
and Time) are ignored by the TDS WGL In Converter. These fields are
provided for compatibility with the TDS WGL Out Converter, which generates
the fields for documentation purposes.

The <patternIdentifier> can be used in subroutines, pattern blocks, or scan
state vectors as a shorthand for PatternExpression when the radix of the
associated signal, bus, group, or scan element is set using the reserved word
symbolic. See the Symbolics section in this chapter for more information on
how to use the reserved word symbolic.

The following vector declaration uses an integer address (0), starting time of
the cycle (0pS), the TimePlate name with which the vector is associated
(t1), and the pattern data ([1 ZZZZZZZZ]).

vector(0, 0pS, t1) := [1 ZZZZZZZZ];

The vector declaration below uses only automatic increment address (+) and
the pattern data ([1- 1111111100000000 1 -]).

vector(+) := [1- 1111111100000000 1 -];

Vectors and subroutine calls may have optional repeat counts. To cause the
vector to be used more than once, the reserved word repeat and a repeat count
are used.

Waveform Generation Language

6-42 Getting Started, Vol. I, R8.1

The following is an example of a simple WGL Patterns block:

Start Example

pattern group_ALL (C0,C1,C2,C3,C4,C5,C6,C7,C8)

vector(0, TimeSet0_0) := [0 0 0 1 1 0 1 1 0];
vector(1, TimeSet1_0) := [1 1 1 0 0 1 1 1 1];
vector(2, TimeSet1_1) := [0 1 1 0 1 1 0 1 0];
vector(3, TimeSet2_0) := [1 1 1 1 1 1 0 1 1];
vector(4, TimeSet3_0) := [0 0 0 0 0 0 1 1 1];
vector(5, TimeSet3_1) := [0 0 0 0 1 0 1 0 0];

End Example

end

The example below is a WGL Patterns block with a repeat statement that
describes a waveform which has a periodic clock for two cycles and an 8-bit
data bus that has a value of all Hi-Z for the first cycle, and a value of 0001
1010 for the second cycle. The repeat statement causes third through sixth
cycles of the waveform to all have the same value on the data bus.

Start Example

signal
clock : input;
data[0..31] : input radix binary;

end

timeplate t1 period 200ns
clock := input[0ps:D, 100ns:S, 150ns:D];
data := input[0ps:Z, 120ns:S] radix binary;

end

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ] (100ns);
vector(1, 200nS, t1) := [1 00011010] (300ns);
repeat 4 vector(3, 200nS, t1) := [1 00011010];

End Example

end

Bidirectional patternParameters always require twice the number of pattern
columns to account for input and output directions. If a bidirectional single-bit

Getting Started, Vol. I, R8.1 6-43

Waveform Generation Language

signal is mentioned as a pattern parameter, two adjacent bits are required (no
space between them is allowed). If a bidirectional signal is mentioned with an
:I or :O, this counts as one parameter per occurrence. A space is required
between them if both directions are used. Bidirectional buses have all of their
input pattern bits mentioned first, followed by the output pattern bits. If an :I
or :O is used on a bidirectional bus, this counts as one pattern parameter, and
at least one space is required as a separator.

The number of bits for each pattern parameter must be the same as the width
of the signal, bus, group, or multiplexed signal or bus. The number of bits for a
bus is the difference between its upper and lower bounds, plus one. The
number of bits in a group is the sum of the number of bits of all the group
members. The number of bits for a single direction multiplexed bus is the
width of the bus times the number of multiplexed parts. The number of bits for
a bidirectional multiplexed bus is the width of the bus times the number of the
multiplexed parts times two.

The following is an example of a WGL Patterns block with bidirectional bus
pattern spacing:

Start Example

signal
foo[0..7] : bidir radix binary;
fee[0..7] : bidir radix hexadecimal;
fum[0..7] : bidir radix hexadecimal;

end

pattern load1 (foo,fee,fum:I,fum:O)

End Example

vector(+) := [10101010-------- FF-- F- --];

The :I and :O can only be used with bidirectional signals, buses, groups,
multiplexed signals or buses, or parts of multiplexed signals or buses.

If the number of the pattern bits in the vector statement does not equal the
sum of the bits assigned to the buses defined in the Signals block (that is, the
bus range, see “Buses” on page 6-18), an error is reported.

The reserved word call invokes a pattern subroutine, as indicated by the
<subroutineName>. The rows of the subroutine are treated exactly as if they

Waveform Generation Language

6-44 Getting Started, Vol. I, R8.1

had been included in-line at the point of the call. Like vectors, calls may have
optional repeat counts specified.

The following is an example of a WGL Patterns block with subroutine call
foo:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
call foo();
vector(+, t1) := [1 00011010];

end

subroutine foo()
vector(t1) := [1 00011111];

End Example

end

The reserved word loop allows a sequence of other vectors, calls, and loops to
be repeated a specified number of times. Loops can be nested to any depth.
Loops have optional names that have no significance other than as a
commentary tag.

The following is an example of a WGL Patterns block with loop loopName:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
loop loopName 3

call foo();
vector(+, t1) := [1 00011010];

 end loopName

End Example

end

The reserved word skip provides for the declaration of a time period when the
waveform state is unspecified. Signal states and event timing are suppressed
during the skipped period.

The following is an example of a WGL Patterns block with a skip of 400nS:

Getting Started, Vol. I, R8.1 6-45

Waveform Generation Language

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
vector(+, t1) := [1 00011010];
skip 400nS;
vector(+, 0pS, t1) := [1 ZZZZZZZZ];
vector(+, t1) := [1 00011010];

End Example

end

Scan pattern rows may appear in pattern blocks freely intermixed with the
other row types. Each row represents an arbitrary number of cycles dependent
on the lengths of the scan chains that it references.

Note that the scan state defines the values of all scan cells in the device. Only
those scan cells on the indicated scan chain(s) are loaded or observed by a
particular scan row. Other scan cells not referenced by a chain in the pattern
row are not affected by the row. Multiple combinations of chain, state, and
direction may appear in each scan row. This provides for parallel scan chains
or simultaneous loading and observing of a single chain. It is illegal, however,
for a scan row to specify the same chain more than once if the direction of the
chain is the same but state values associated with the chain are different.

The following is an example of parallel scan chains:

Waveform Generation Language

6-46 Getting Started, Vol. I, R8.1

Start Example

pattern pat1 (clock, enable, scanIn, scanOut, scanIn1, scanOut1)
 vector(+, scanTiming) := [1 1 1 1 1 1];
 scan(+,scanTiming) := [1 1 - - - -],

input[chain1:state1],
output[chain2:estate1],
input[chain11:state3],
output[chain12:estate3] ;

 vector(+, scanTiming) := [1 1 1 1 1 1];
 scan(+,scanTiming) := [1 1 - - - -],

input[chain11:state4],
output[chain12:estate4],
input[chain1:state2],
output[chain2:estate2];

 vector(+, scanTiming) := [1 1 1 1 1 1];

End Example

end

It is illegal for a scan chain with no input edge signal to follow the reserved
word input. It is illegal for a scan chain with no output edge signal to follow
the reserved word output.

The reserved word feedback indicates that the signals appearing on the chain
output should be directed back into the chain input while simultaneously
comparing against the specified scan state vector. Chains referenced in a
feedback clause must have both an input and an output signal. For more
information, see “Scan Chain” on page 6-29.

It is important to make certain that signals that terminate scan chains have
the proper state character supplied to them, as described on page 6-37 , either
from parallel pattern data or from the scan chain associated with the scan
run. The following example illustrates a common error made in using scan
chains.

Getting Started, Vol. I, R8.1 6-47

Waveform Generation Language

Start Example

waveform t1
scancell

latch1; latch2; latch3; latch4;
latch5; latch6; latch7; latch8;

end
scanstate

state1 := latch1(0) latch2(0) latch3(0) latch4(0);
state2 := latch1(0) latch2(0) latch3(0) latch4(1);
. . .
estate1 := latch5(1) latch6(1) latch7(1) latch8(0);
estate2 := latch5(1) latch6(1) latch7(0) latch8(1);
estate3 := latch5(1) latch6(1) latch7(0) latch8(0);

. . .
end
signal
clock : input;

scanIO : bidir;
scanOut : output;
enable : input;

end
scanChain

chain1 [scanIO, latch1, latch2, latch3, latch4];
chain3 [latch1, latch2, latch3, latch4, scanIO];
chain2 [latch5, latch6, latch7, latch8, scanOut];

end
timeplate scanTiming period 200ns

clock := input [0ps:D, 50ns:S, 100ns:D];
enable := input [0ps:S];
scanIO := input [0ps:S];
scanIO := output [0ps:X, 50ns:Q];
scanOut := output [0ps:X, 50ns:Q, 90ns:X];

end
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1];
. . .
end

End Example

end

Waveform Generation Language

6-48 Getting Started, Vol. I, R8.1

Edge signals terminating scan chains that are used in the scan runs of a scan
pattern row must contain a sample state of the appropriate directionality in
the TimePlate referred to by the scan pattern row. Signals that appear at the
start of a scan chain (input) must include an S state character, and signals
that appear at the end of a scan chain (output) must include a Q state
character in their respective waveform shapes. A given scan chain may appear
in some, but not all, scan pattern rows in a WDB. A single TimePlate may be
used in all scan pattern rows, as long as the state of the edge signal in the
scan chain is supplied by the parallel pattern data of the pattern rows that do
not use the scan chain in a scan run.

In the parallel scans chain example on page 6-45, the edge signal scanOut,
which is a part of the scan chain chain2, contains a sample state (Q) in the
TimePlate scanTiming. Problems arise because the associated pattern
column contains the placeholder character (-). In this case, because the edge
signal contains the sample state Q, and the Q state requires that a state exists
to be sampled, the associated parallel pattern data must supply that state.
The example does not, and hence is erroneous.

To repair the error you must either supply a state value in the parallel pattern
data, or use chain2 instead of chain3 as the terminal chain in the scan run.
The remedial sections of the examples below are highlighted in bold type
face.

An example of state character supplied in the parallel pattern data is:

Start Example

. . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - X], input[chain1:state1],

output[chain3:estate1];
. . .
end

End Example

end

Getting Started, Vol. I, R8.1 6-49

Waveform Generation Language

An example of state characters supplied by a scan chain is:

Start Example

. . .
pattern pat1 (clock, enable, scanIO:I, scanIO:O, scanOut)
vector(+, scanTiming) :=[1 1 1 - X];
scan(+,scanTiming) :=[1 1 - - -], input[chain1:state1],

output[chain3:estate1], output[chain2:estate1];
. . .
end

End Example

end

A complete example of WGL scan structures is provided on page 6-102 of this
chapter.

Subroutines

The Subroutines block is used to define pattern sequences that are called
repeatedly from a Patterns block.

The syntax of the WGL Subroutines block is:

subroutine <subroutineName>
PatternRows
end

A complete BNF syntactical representation of the Subroutines block follows:

Subroutines ::= “subroutine” <subroutineName> “()”
PatternRows “end”

PatternRows ::= { [<vectorLabel> “:”] (Loop | Repeat | ScanRow) }

Loop ::= “loop” [<loopName>] <loopCount>
PatternRows “end” [<loopName>]

Repeat ::= [“repeat” <repeatCount>] (Vector | Call | Offset)

Vector ::= “vector” Address “:=” PatternExpression [TimeComment] “;”

Address ::= “(” AddressElement { “,” AddressElement } “)”

AddressElement ::= (“+” | <cycleNumber> [Unit] | <timeplateName>)

Waveform Generation Language

6-50 Getting Started, Vol. I, R8.1

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

TimeComment ::= “(” Time “)”

Time ::= <timeValue> Unit

Call ::= “call” <subroutineName> “()” “;”

Offset ::= “skip” Time “;”

ScanRow ::= “scan” Address “:=” ScanRowElement { “,” ScanRowElement } “;”

ScanRowElement ::= (PatternExpression | ScanRun)

ScanRun ::= ScanDir “[” <chainName> “:” <stateName> “]”

ScanDir ::= (“input” | “output” | “feedback”)

<subroutineName> is a user-defined name, such as patterns_1, that is used
to define a specific subroutine. PatternRows are definitions of rows of data bits
used to supply data to waveforms when modulated through a TimePlate, as
defined in the TimePlate block. The interpretation of pattern state
information is the same as in the most recently preceding Patterns block; the
pattern parameter from the preceding Patterns block also defines the column
interpretation in the subroutines that follow.

You define the contents of a subroutine in the Subroutines block, and access
the subroutine using the reserved word call. When you call the subroutine you
defined in the Subroutines block, WGL jumps to the beginning of the
corresponding Subroutines block. On completion of the subroutine, WGL
returns to the part of the WGL code immediately after the call statement.

An example of a WGL Subroutines block is:

Start Example

subroutine foo()
vector(t1) := [1 00011111];

End Example

end

Getting Started, Vol. I, R8.1 6-51

Waveform Generation Language

The following is an example of a WGL call statement for the subroutine
defined in the example above:

Start Example

pattern load1 (clock, data[8..15])
vector(0, 0pS, t1) := [1 ZZZZZZZZ];
loop loopName 3

call foo();
vector(+, t1) := [1 00011010];

 end loopName

End Example

end

Symbolics

The Symbolics block is used to associate an identifier with a bit pattern for a
specific signal, bus, group, scan cell, scan register, or scan group, making it
easier to specify hardware operation codes. Also, if a single-bit signal, bus, or
group was defined with a symbolic radix, a Symbolics block must be created
that corresponds to the definition.

The syntax of the WGL Symbolics block is:

symbolic SigReference [SymDirection] Radix
SymbolicAssignment
end

A complete BNF syntactical representation of the Symbolics block follows:

Symbolics ::= “symbolic” SignalReference [SymDirection] Radix
SymbolicAssignment “end”

SignalReference ::= <signalName> [Range]

Range ::= “[” <bitNumber> [“..” <bitNumber>] “]”

SymDirection ::= (“input” | “output”) [(“reference” | “timing”)]

Radix ::= “radix” (“binary” | “octal” | “decimal” | “hex” | “hexadecimal” |
“symbolic”)

SymbolicAssignment ::= [<patternIdentifier>] “:=” PatternExpression “;”

Waveform Generation Language

6-52 Getting Started, Vol. I, R8.1

PatternExpression ::= “[” { (<stateString> | <patternIdentifier>) } “]”

Symbols defined in the Symbolics block can be used in place of the
corresponding pattern states in the vectors in the Patterns block.

Each Symbolics block refers to the name of a previously defined signal, bus,
group, scan cell, scan register, or scan group. The reserved word input or
output must be omitted for scan elements. Signals defined using the reserved
word bidir may be associated with two Symbolics blocks. Radix, the radix of
the Symbolics block, must also be specified. PatternExpressions within the
block are interpreted in the specified radix.

The <patternIdentifier> can be used in subroutines, pattern blocks, or scan
state vectors as a shorthand for PatternExpression when the radix of the
associated signal, bus, group, or scan element is set using the reserved word
symbolic. If a bit pattern is to be entered for which there is no defined
identifier, the pattern may be entered in the radix defined in the Symbolics
block.

The PatternExpression defined for each identifier must contain legal pattern
stateStrings. The number of bits in the PatternExpression must be the same
as the number of bits in the corresponding signal, bus, or group that is
associated with it. See “Scan State” on page 6-27 for more information about
stateStrings.

Getting Started, Vol. I, R8.1 6-53

Waveform Generation Language

The following is an example of a WGL Symbolics block, and a symbolic radix
assignment in pattern block group_in:

Start Example

signal
inst [0..7] : input radix symbolic;
foo : input;
bar : output;

end
symbolic inst input radix binary

add := [00000001];
sub := [00000010];
mul := [00000011];
div := [00000100];
xor := [10000000];
lsl := [11000000];
asl := [11100000];

end
pattern group_in (foo, inst, bar)

vector(+) := [1 add 0];
vector(+) := [0 div 1];
vector(+) := [1 add 1];

End Example

end

All the pattern expressions that make up a Symbolics block must be unique.
All the identifiers must also be unique. Note that WGL supports partially
specified symbolic blocks. It is possible to have identifiers without pattern
expressions or pattern expressions without identifiers.

Pattern data that does not match one of the defined symbols may be entered
directly in the pattern block in the table radix. If an identifier could also be a
legal pattern expression, it is recognized as an identifier. Decimal radix may
only be used with buses and groups with 32 or fewer scalar member signals.

Waveform Generation Language

6-54 Getting Started, Vol. I, R8.1

The following is an example of Symbolics block with unspecified pattern
expressions and identifiers:

Start Example

signal

data[0..7]: input radix symbolic;
end

symbolic data input radix hex

GO := [00];
STOP := [FF];
IDLE := [A2];
missing:= [];

:= [22];
end

pattern sample (data)
vector(+):= [GO];
vector(+):= [IDLE];
vector(+):= [01];
vector(+):= [3B];
vector(+):= [STOP];

End Example

end

Equation-Specific Program Blocks
This section discusses the specific syntax for each of the equation-specific
program blocks that have not been discussed previously. The WGL
equation-specific program blocks:

Use the equation-specific program blocks to assign variable timing values for
edge placement and current, voltage, and frequency level values for signal
strength. You enable equation support by programmatically declaring an
EquationSheet block containing at least one ExprSet sub-block. The ExprSet
sub-block contains a list of variables that you create, paired with their
assigned constant values, or expressions used to determine the variable value.

EquationSheet
EquationDefaults

Getting Started, Vol. I, R8.1 6-55

Waveform Generation Language

You can add more control over which variables are used when you create a test
program by declaring the optional EquationDefaults block. The
EquationDefaults block specifies which sets of expressions or constant values
assigned to variables in the ExprSet sub-blocks are used during subsequent
transactions with TDS products that interact with a WDB.

The following example shows the structure of the equation-specific program
blocks in a WGL file, and the order in which they are declared. While some of
the programming blocks used in the example are optional, the example
portrays all possible equation-specific blocks and sub-blocks.

Start Example

equationsheet <sheet name>
exprset <expression set name>

expression information goes here
end
exprset <expression set name>

expression information goes here
end

.
end
equationsheet <sheet name>

exprset <expression set name>
expression information goes here

end
.

end
equationdefaults

default information goes here

End Example

end

The ExprSet sub-block must be contained within an EquationSheet block and
cannot be used as a stand-alone block.

NOTE
The right side of the equation, delimited by the equal sign (=) on one
side and the terminating newline character, cannot exceed 247
characters. The total includes white spaces.

Waveform Generation Language

6-56 Getting Started, Vol. I, R8.1

In the following manual sections, the equation-specific program blocks are
presented in the order that you would be most likely to use them when
creating a WDB that includes equations.

EquationSheet

EquationSheet blocks allow for the overall organization of variable
declarations. An EquationSheet block contains one or more ExprSet
sub-blocks.

The ExprSet sub-blocks contain variable declarations, that is, expressions or
constant values assigned to variable names. To support equations in your
WGL file, the WGL file must contain at least one EquationSheet block with at
least one ExprSet sub-block. The number of EquationSheet blocks in a WGL
file cannot exceed 100.

EquationSheet blocks and ExprSet sub-blocks must be declared before they
are referenced in an EquationDefaults block. For this reason, it is a good idea
to declare all EquationSheet blocks before you declare any EquationDefaults
blocks. Additionally, the EquationSheets blocks must be declared before the
TimePlate block.

The syntax of the WGL EquationSheet block is:

equationsheet <equationSheetName>
ExpressionDecl
end

A complete BNF syntactical representation of the EquationSheet block
follows:

EquationSheet ::= “equationsheet” <equationSheetName>
{ ExpessionDecl } “end”

ExpressionDecl ::= “exprset” <exprSetName> { VariableDecl } “end”

The identifier <equationSheetName> is used to name the specific instance of
an Equation Sheet block of the WGL program; it is the unique name of that
block.

An <equationSheetName> must be unique within a WGL file and must
conform to the naming conventions for identifiers, as described in “Identifiers”
on page 6-6. An <equationSheetName> has the same length limitations as

Getting Started, Vol. I, R8.1 6-57

Waveform Generation Language

signal name for your tester and automatic truncation is performed when
EquationSheet names are too long. Any <equationSheetName> that is
identical to a WGL reserved word (see the WGL reserved word list on
page 6-8) is flagged by the WGL parser as illegal. You can still use an
<equationSheetName> that is the same as a WGL reserved word by enclosing
the name in double quotation marks (“ ”).

The identifier <exprSetName> refers to an ExprSet sub-block declared within
the EquationSheet block of the WGL program. (For details of the WGL
constructs contained in the ExprSet sub-block, see “ExprSet” on page 6-57.)
The <exprSetName> identifier must conform to the naming conventions for
identifiers, as described in “Identifiers” on page 6-6.

The following is an example of two EquationSheet declarations:

Start Example

equationsheet AC
exprset SET1

tclk1 := tclk + 10nS;
write_cycle := tclk1*3;
tclk := 35nS;
Vcc := 4.5V;

end
exprset SET2

tclk1 := tclk + 20nS;
write_cycle := tclk1*2;
tclk := 40nS;
Vcc := 5.0V;

end
equationsheet AC_control

exprset Control_set
Vih := Vcc-0.5V;
Vil := Vih-3.0V;

end

End Example

end

ExprSet

ExprSet sub-blocks are contained within EquationSheet blocks. They contain
precise assignments of expressions and constant values to variables.

Waveform Generation Language

6-58 Getting Started, Vol. I, R8.1

The syntax of the WGL ExprSet sub-block is:

exprset <exprSetName>
{ VariableDecl }
end

A complete BNF syntactical representation of an ExprSet sub-block follows:

VariableDecl ::= <variableName> “:=” [Expression] [“[“ MinMax “]”] “;”

Expression ::= Constant | <variableName>
| Expression Operator Expression
| “(“ Expression “)” | (“+” | “-”) Expression | BuiltInVar
| BuiltInFunc (Expression [, Expression])
| (“++” | “--”) Expression | Expression (“++” | “--”)

BuiltInVar ::= “PI” | “E” | “DEG”

BuiltInFunc ::= “ACOS” | “ASIN” | “ATAN” | “CEIL” | “COS” | “COSH”
| “EXP” | “FABS” | “FLOOR” | “LOG’ | “LOG10”
“ SIN” | “SINH” | “SQRT” | “TAN” | “TANH” | “ATAN2”
| “POW”

Operator ::= (“+” | “-” | “*” | “/” | “^”)

Constant ::= (<integerValue> | <floatingPointValue>) [Scale] [EqUnit]

Scale ::= (“p” | “n” | “u” | “m”)

EqUnit ::= (“A” | “V” | “S” | “H”)

MinMax ::= Constant | “,” Constant | Constant “,” Constant

An ExprSet sub-block is contained within an EquationSheet block and must
have a unique name, the <exprSetName>, within the context of the
EquationSheet block that contains it. Multiple ExprSet sub-blocks can be
declared within an EquationSheet. Multiple ExprSet sub-blocks allow for the
assignment of more than one value or expression to a variable.

The ExprSet sub-block begins with the reserved word exprset followed by the
<exprSetName>, which must conform to the naming conventions for
identifiers, as described in “Identifiers” on page 6-6. The body of the ExprSet
sub-block contains a list of <variableName>s and the values assigned to them.
The sub-block ends with the block terminator, end.

Getting Started, Vol. I, R8.1 6-59

Waveform Generation Language

The the number of ExprSet sub-blocks within a EquationSheet block in a
WGL file cannot exceed 100. An <exprSetName> must conform to the same
length limitations as signal names for your tester; automatic truncation is
performed when ExprSet sub-block names are too long.

An <exprSetName> is case sensitive and must begin with an alphabetic
character. <exprSetName>s that are identical to WGL reserved words (see the
WGL reserved word list on page 6-8) are flagged by the WGL parser as illegal.
You can still use a name that is the same as a WGL reserved word by enclosing
the name in double quotation marks (“ ”).

While no two <equationSheetName>s can be identical, there can be multiple
identical <exprSetName>s and <variableName>s, provided that identical
<exprSetName>s are not contained in the same EquationSheet block.
Multiple identical <variableName>s are also legal, provided that they are not
contained in the same ExprSet sub-block.

The following example shows an illegal usage of <exprSetName>s and
<variableName>s.

Start Example

THE FOLLOWING USE OF IDENTICAL EXPRSET NAMES IS ILLEGAL

equationsheet Sheet_1
exprset worst

Vcc1:= 4.5V;
TempDegC1 := 70;
Textern1 := 10nS;

end
exprset best

Vcc1 := 5.75V;
TempDegC1 := 0;
Textern1 := 0nS;

end
exprset worst {THIS EXPRSET NAME IS ILLEGAL BECAUSE IT HAS ALREADY

BEEN USED IN THIS EQUATIONSHEET BLOCK}
Vcc1:= 3.0V;
TempDegC1 := 90;
Textern1 := 50nS;
Vcc1:= 5.0V { THIS VARIABLE NAME IS ILLEGAL BECAUSE IT OCCURS IN

THE SAME EXPRSET SUB-BLOCK AS AN IDENTICALLY NAMED VARIABLE.}
end

Waveform Generation Language

6-60 Getting Started, Vol. I, R8.1

equationsheet Sheet_2
exprset worst

Vcc2:= 4.5V;
TempDegC2 := 70;
Textern2 := 10nS;

end
exprset best

Vcc2 := 5.75V;
TempDegC2 := 0;
Textern2 := 0nS;

End Example

end

Variables

The <variableName> identifier gives a unique name to a variable that can
then be referenced in other parts of the WGL file. The identifier,
<variableName>, must conform to the naming conventions for identifiers, as
described in “Identifiers” on page 6-6. See “Tester-Specific Program Blocks” on
page 6-74 and “TimingSets” on page 6-81 for more information.

Once you assign a value to a <variableName> (or declare the variable) in an
ExprSet sub-block, you can reference the <variableName> in the TimePlates
block to specify the cycle period or to specify times at which events within
TimePlates occur. You can also reference <variableName>s in the TimingSets
block to specify a time assignment to a timing generator. Additionally, a
<variableName> can be referenced by expressions within ExprSet sub-blocks
in EquationSheet blocks other than the one in which the variable was
declared.

All variable declarations within an EquationSheet block are unique to that
EquationSheet block. A variable of the same name cannot be declared in
another EquationSheet block, but it can be declared again in another ExprSet
sub-block contained in the same EquationSheet block. In fact, that is the main
purpose of multiple ExprSet sub-blocks: to provide a way for you to reassign
the value of a variable by naming it in another ExprSet sub-block and giving
it a different value.

Any <variableName> declared in any ExprSet sub-block in the WGL file can
be referenced in other expressions in the same EquationSheet block or in
other EquationSheet blocks.

Getting Started, Vol. I, R8.1 6-61

Waveform Generation Language

Forward referencing of variables is allowed. This means that you can
reference variables even though those variables are not declared until later in
the WGL file.

When you declare a variable in an ExprSet sub-block, the variable name is
added to a conceptual list of all the variable names that are declared in all of
the ExprSet sub-blocks contained in an EquationSheet block. The set of
variable names on the list is actually associated with the EquationSheet block
containing the ExprSet sub-block in which the variable was declared. The
value assigned to the variable, however, is associated with the ExprSet
sub-block.

Waveform Generation Language

6-62 Getting Started, Vol. I, R8.1

A conceptual model of the arrangement of equation sheet/expression set data
contained within the WDB, follows:

For example, if you have an EquationSheet block that contains three ExprSet
sub-blocks, and in each sub-block you assign values or expressions to two of
the variables, the EquationSheet block will have a list of six unique variable
names associated with it. On any given ExprSet sub-block, the two variables
to which you assigned values have valid, assigned values; the other four
variables associated with the EquationSheet block are unassigned, having no
value associated with them.

This becomes important when you use the EquationDefaults block to specify
which ExprSet sub-block from an EquationSheet you want to use to assign

Figure 2. Conceptual model of equation sheet data organization.

Variable Description Expression Value Constraints

EXPRESSION SET_1

WDB

EQUATION SHEET_2

EQUATION SHEET_<n>

EQUATION SHEET_1

clock_per clock cycle 250nS 250nS

EXPRESSION SET_2

EXPRESSION SET_<n>

edge1 clock pulse1 50nS 50nS

edge2 clock off1

edge3 clock pulse2

edge4 clock off2

edge5 clock pulse3

Getting Started, Vol. I, R8.1 6-63

Waveform Generation Language

values to variables. Since all the variables from all of the ExprSet sub-blocks
are on the EquationSheet variable name list, you must make certain to
explicitly re-declare all variables from all of the ExprSet sub-blocks contained
in the EquationSheet block mutually in every other block. Any variable name
that is on the list but has no explicit value assigned to it in the active ExprSet
sub-block is given an “unassigned” value. While it is syntactically permissible
to have unassigned variables in your WGL file, it is a bad practice to do so; if
you use any variable that is not explicitly assigned a value in an ExprSet
sub-block, and that sub-block is named in the EquationDefaults block, the
variable will generate an error message when you use the TDS WGL In
Converter to convert your WGL file to a WDB. For more information on how to
use the EquationDefaults block, see “EquationDefaults” on page 6-69.

There is no limit to the number of variables within an ExprSet sub-block. A
<variableName> must conform to the same length limitations as signal names
for your tester; automatic truncation is performed when a <variableName> is
too long.

<variableName>s are case sensitive and must begin with an alphabetic
character. <variableName>s that are identical to WGL reserved words (see
the WGL reserved word list on page 6-8) are flagged by the WGL parser as
illegal. You can still use a name that is the same as a WGL reserved word by
enclosing the name in double quotation marks (“ ”).

An example of a valid ExprSet sub-block variable is:

volt := 5.5V

where volt is the variable to which a value is assigned.

Constants

A Constant can be either an integer (<integerValue>) or a floating-point
number (<floatingPointValue>).

An example of a valid ExprSet sub-block constant is:

t := 3

where 3 is the constant value assigned to the variable t.

Waveform Generation Language

6-64 Getting Started, Vol. I, R8.1

Expressions

An expression is a formula for combining variables, constants, or other
expressions in a mathematical way. An expression can be something as simple
as a constant value, a reference to a variable, or a combination of constants
and variables related to each other with mathematical operators (such as +, -,
*, and /).

An example of a valid ExprSet sub-block expression is:

clock := 10nS*t

where 10nS*t is the expression whose calculated value is assigned to the
variable clock.

Operators and Incrementors

The ExprSet sub-block supports a list of standard mathematical operators
that you can use when writing an expression.

Table 2 is a list of operators, listed in order of decreasing precedence.
Operators with the same level of precedence are grouped and separated from
operators of differing precedence by bold lines:

Table 2. Equation Operators

Operator Operation

* multiplication

/ division

+ addition

- subtraction

^ exponent

Getting Started, Vol. I, R8.1 6-65

Waveform Generation Language

Built-ins

You can use any of a number of predefined variables or functions in the
ExprSet sub-block. The predefined variables (BuiltInVar) are listed in the
following table:

The following example shows the use of a built-in variable, PI:

Start Example

End Example

hi_volt := low * PI

where the variable hi_volt will receive the value of another variable, low,
multiple by 3.14159265358979323846.

The following table lists the built-in functions (BuiltInFunc) supported in the
ExprSet sub-block:

Table 3. Built-in Variables

WGL BuiltInVar Value

E 2.718281828459045523536

DEG 57.2957795130823208768

PI 3.14159265358979323846

Table 4. Built-in Functions

WGL BuiltInFunc Performs Operation

ACOS arc cosine

ASIN arc sine

ATAN arc tangent

CEIL ceiling (round up to integer)

COS cosine

COSH hyperbolic cosine

EXP exponential ex

FABS absolute value

Waveform Generation Language

6-66 Getting Started, Vol. I, R8.1

The following example shows the use of a built-in function, LOG:

Start Example

End Example

sim_time := LOG (clock)

where the variable sim_time will receive the value of the natural logarithm
of another variable, clock.

Annotations

Annotations are supported and may be attached to variables in the ExprSet
sub-block through the use of curly braces ({ }). Only one annotation is allowed
per variable. If a variable is encountered in multiple ExprSet sub-blocks with
different annotations, the contents of the annotations are concatenated in the
resultant WDB. For identical annotations, only the first instance of the
annotation is stored in the WDB, the remaining instances being discarded as
redundant.

For further information on how to use WGL annotations, see “Annotations” on
page 6-92.

FLOOR floor (round down to integer)

LOG natural logarithm

LOG10 base 10 logarithm

SIN sine

SINH hyperbolic sine

SQRT square root

TAN tangent

TANH hyperbolic tangent

ATAN2 arc tangent y/x

POW xy

Table 4. Built-in Functions (Continued)

WGL BuiltInFunc Performs Operation

Getting Started, Vol. I, R8.1 6-67

Waveform Generation Language

Scaling

You can scale constant values assigned to variables by specifying a value for
Scale.

Scale works in concert with EqUnit (see “Units of Measurement” on page 6-68)
to permit you to adjust the unit of measurement to suit your needs. The scale
prefix must follow the constant to which it applies with no intervening white
space and must precede the EqUnit value that it modifies.

The following scale factors represent the available scaling multipliers for
constants:

You can add the scaling prefix to modify the basic units of measurement, as
described in “Units of Measurement” on page 6-68.

An ExprSet sub-block using a scaled constant is shown in the following
example. In the example, the scaled constant is identified by a WGL
annotation:

Start Example

exprset AC

Vol := 2mV; {THIS CONSTANT IS SCALED TO 10-3 }

End Example

end

Table 5. Scaling prefixes

Suffix Multiplier

p (pico-) 10-12

n (nano-) 10-9

u (micro-) 10-6

m (milli-) 10-3

Waveform Generation Language

6-68 Getting Started, Vol. I, R8.1

Units of Measurement

Use EqUnit to specify a unit of measurement to be associated with a constant
value. You can specify the following units of measurement in the ExprSet
sub-block:

You can add a scaling factor to modify the basic units of measurement, as
described in “Scaling” on page 6-67.

A WGL fragment showing a EqUnit setting affixed to a constant value
assigned to a variable follows:

Start Example

exprset timing
clock := 200nS; { Note the use of the “S” unit value.}

End Example

end

Minimum and Maximum Ranges

MinMax lets you specify minimum and maximum values when setting a valid
minium value, a valid maximum value, or a valid range (between minium and
maximum, including both). This capability is supported through the use of
square brackets ([]). If you want to specify both minimum and maximum
values you must list the minimum value first (2.2), followed by a comma,
followed by the maximum value (5.7), for example, [2.2,5.7].

To specify only the maximum value, provide a comma as a place holder,
followed by the maximum value (7.25), for example, [,7.25].

Table 6. Units of Measurement

WGL
Notation

Unit

A ampere

H hertz

S Second

V volt

Getting Started, Vol. I, R8.1 6-69

Waveform Generation Language

Square brackets around an individual value, for example, [2.5], is all that is
required to specify a minimum value (2.5) only. White space is optional in all
cases. Minimum and maximum values can be expressed only using constant
values.

A WGL fragment showing a MinMax setting for a variable follows. The
variables with MinMax settings are identified by annotations.

Start Example

exprset AC_20mhz
tclk := 20nS;
tempDegC := 70;
Vcc := 4.5V;
V1 := Vcc/2;
Vih := Vcc-1 [, 5.5V]; {maximum value specified here }
Vil := Vih-3 [0.25V];{minimum value specified here}
t1 := tempDegC/20*1.1nS + tclk;
write_cycle := tclk*6 [60nS, 600nS]; {min and max specified here}
cycle_time := 100nS;

End Example

end

EquationDefaults

The EquationDefaults block establishes which ExprSet sub-blocks are to be
used as defaults for calculations. The syntax of the WGL EquationDefaults
block is:

equationdefaults
DefaultsDecl
end

A complete BNF syntactical representation of the EquationDefaults block
follows:

EquationDefaults ::= “equationdefaults” DefaultsDecl “end”

DefaultsDecl ::= <equationSheetName> “:” <exprSetName>
{ “,” <equationSheetName> “:” <exprSetName> } “;”

Waveform Generation Language

6-70 Getting Started, Vol. I, R8.1

The EquationSheet blocks named by the <equationSheetName> and ExprSet
sub-blocks named by the <exprSetName> must be defined before they are
referenced in an EquationDefaults block.

All EquationSheet blocks are active in the database but only one ExprSet
sub-block per EquationSheet block is active for calculations. EquationSheet
blocks and their active ExprSet sub-blocks are explicitly identified through
the use of the EquationDefaults block and are specified using a
comma-separated list of pairs ending with a semi-colon. These “equation
sheet/expression set pairs” are specified by listing the EquationSheet name
first, followed by a colon (:), followed by the ExprSet sub-block name. White
space is optional.

An example of an EquationDefaults block is shown below with two equation
sheet/expression set pairs. In this example, the ExprSet sub-block SET1 is
associated with EquationSheet AC and the ExprSet sub-block
Control_20mhz is associated with the EquationSheet AC_control.

Start Example

EquationDefaults
AC:SET1;
AC_control:Control_20mhz;

End Example

end

The EquationDefaults block is not required. If this block is not used, the last
ExprSet sub-block declared within each EquationSheet supplies the variable
values used for calculations.

If the EquationDefaults block is used, but is not fully specified by explicitly
defining an expression set for each equation sheet in the WDB, the variable
values assigned in the last ExprSet sub-block declared in the EquationSheet
block are used.

If you use more than one EquationDefaults block in your WGL file, the
equation sheet/expression set pairs defined in the last EquationDefaults block
in the WGL file override any other equations sheet/expression set pairs in that
EquationSheet block.

Getting Started, Vol. I, R8.1 6-71

Waveform Generation Language

If any EquationSheet block is not specified in the EquationDefaults block(s),
the variables in the EquationSheet block obtain their assigned values from the
last ExprSet sub-block in that EquationSheet block.

Using more than one EquationDefaults block in your WGL program is not
necessary, and sometimes leads to confusion. For example, the following WGL
fragment shows what happens when you use two EquationDefaults blocks:

Start Example

EquationDefaults
AC : Set2;

end
EquationDefaults

timing : eq1;

End Example

end

Assume that the only EquationSheet blocks in this WGL file are AC and
timing. The first EquationDefaults block sets the default ExprSet sub-block
for the EquationSheet block AC to Set2, and the second EquationDefaults
block sets the default ExprSet sub-block for the EquationSheet block timing
to eq1. However, since every EquationSheet block in a WGL file is active,
there is an implicit equation sheet/expression set pair for timing in the first
EquationDefaults block, and a similar implicit equation sheet/expression set
pair for AC in the second Equationdefaults block. It would be much clearer in
this case to define both defaults in a single EquationDefaults block, as shown
below:

Start Example

EquationDefaults
AC : Set2;
timing : eq1;

End Example

end

A valid reason for using more than one EquationDefaults block in your WGL
program is in the case of incremental test program development. For example,
you might want to generate a test program using one set of defaults, then,
after evaluating your output, you might add another EquationDefaults block
containing different values. You would comment out the previous

Waveform Generation Language

6-72 Getting Started, Vol. I, R8.1

EquationDefaults block, so that you could keep a record of which defaults you
had used during test development. The following example uses such a
technique:

Start Example

THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_g
#EquationDefaults
AC : Set1;
timing : eq1;
#end
#
THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_h
#EquationDefaults
AC : Set2;
timing : eq1;
#end
#
#THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_i
#EquationDefaults
AC : Set2;
timing : eq2;
#end
#
THE FOLLOWING DEFAULT BLOCK WAS USED FOR TEST 6170_k
EquationDefaults

AC : Set1;
timing : eq2;

End Example

end

The above example records the defaults that were used for test 6170_g,
6170_h, and 6170_i. The last EquationDefaults block will specify the defaults
for test 6170_k when it is run. Note that the pound signs denoting comment
lines do not include the last EquationDefaults block, therefore leaving the last
block uncommented and active.

An example of a typical WGL program, using many of the equation support
constructs discussed in the previous sections of this chapter, is shown below:

Getting Started, Vol. I, R8.1 6-73

Waveform Generation Language

Start Example

waveform equation_test_case

signal
clk :input;
ale :input;
RE :input;
OE :input;
dbus[0..3] :output;

end

equationsheet AC_control
exprset worst

Vcc := 4.75V;
TempDegC := 70;
Textern := 10nS;

end
exprset best

Vcc := 5.5V;
TempDegC := 0;
Textern := 0nS;

end
exprset typical

Vcc := 5V;
TempDegC := 20;
Textern := 5nS;

end
end

equationsheet AC_timing
exprset eq1

Vil := Vcc - 3.0;
Vih := Vcc - 1.0;
cycle_time := TempDegC/100*1nS + 5V/Vcc*1nS + 100nS;
tclk1 := 20nS;
tclk2 := tclk1 + 20nS;
t1 := TempDegC/100*1nS + 5V/Vcc*1nS + Textern + 10nS;
t2 := 20nS + t1;
t3 := t2 + tclk1;
t4 := cycle_time - 30nS;
t5 := cycle_time - 10nS;

end
end

Waveform Generation Language

6-74 Getting Started, Vol. I, R8.1

equationdefaults
AC_timing:eq1;
AC_control:typical;

end

timeplate ts1 period cycle_time
clk := input[0pS:D, tclk1:U, tclk2:D, 90nS:U];
ale := input[0pS:D, t1:S, 80nS:D];
RE := input[0pS:D, t2:S, t3:D];
OE := input[0pS:P, 10nS:S];
dbus[0..3] := output[0pS:X, t4:Q, t5:X];

end

pattern group_ALL (clk, ale, RE, OE, dbus)
vector(0, ts1) := [- 1 1 1 1011];
vector(0, ts1) := [- 0 0 0 XXXX];
vector(0, ts1) := [- 0 0 0 XXXX];
vector(0, ts1) := [- 1 1 1 1111];

end

End Example

end

Tester-Specific Program Blocks
This section discusses the specific syntax for each of the tester-specific
program blocks that have not been discussed previously. Use the following
tester-specific program blocks to define WDB objects that contain information
specific to your tester:

The tester-specific program blocks are presented in the likely order of use
when creating a WDB.

Formats
Registers
Pin Groups
TimeGens
TimingSets

Getting Started, Vol. I, R8.1 6-75

Waveform Generation Language

Formats

The Formats block is used to define tester-specific waveform shapes. A
waveform shape describes the general outline of a portion of a waveform. No
timing information regarding placement of waveform edges is conveyed in this
program block.

The syntax of the WGL Formats block is:

format
FormatDecl
end

A complete BNF syntactical representation of the Formats block follows:

Formats ::= “format” { FormatDecl } “end”

FormatDecl ::= <formatName> “:” “[” <TDSstate> { “,” <TDSstate> } “]” “;”

FormatDecl is composed of a <formatName>, such as non_return_to_zero,
followed by a colon (:), followed by one or more of the TDS state characters
enclosed in brackets ([]). The <formatName> must generally conform to the
naming conventions of your tester.

Table 7 lists TDS state characters. State characters must be expressed using
the proper case, as shown.

Table 7. TDS logic states

TDS Logic State Characters Meaning

D Force logic low

U Force logic high

N Force logic unknown

Z Force logic high impedance

S Force logic substituted from pattern

C Force complement of substituted shape

P Force logic using previous format shape

L Compare logic low

H Compare logic high

Waveform Generation Language

6-76 Getting Started, Vol. I, R8.1

When the WDB you create in WaveMaker is viewed or edited in WGL format,
the force and compare low, high, unknown, and high-impedance TDS logic
state characters map to WGL pattern state characters as listed in Table 8.

NOTE
The placeholder character (-) is used when no Q, R, S, or C appears
in the TimePlate and timing track used for that cycle.

X Compare logic unknown (don’t care)

T Compare logic high impedance

Q Compare logic substituted from pattern

R Compare complement of substituted format shape

0 Unknown direction, logic low

1 Unknown direction, logic high

F Unknown direction, logic high impedance

? Unknown direction, logic unknown

Table 8. WGL-pattern-state to TDS-logic-state mapping

WGL Pattern State Characters TDS Logic State Characters Meaning

0 D Force logic low

1 U Force logic high

X N Force logic unknown

Z Z Force logic high impedance

– not applicable Placeholder

0 L Compare logic low

1 H Compare logic high

X X Compare logic unknown (don’t
care)

Z T Compare logic high impedance

Table 7. TDS logic states (Continued)

TDS Logic State Characters Meaning

Getting Started, Vol. I, R8.1 6-77

Waveform Generation Language

There can be multiple instances of FormatDecl. Each instance is separated by
a semicolon (;).

An example of a WGL Formats block is:

Start Example

format
non_return_to_zero [S];
delayed_non_return_to_zero [P,S];
return_to_zero [D,S,D];
return_to_one :[U,S,U];
return_to_inhibit [Z,S,Z];
surround_by_complement [C,S,C];
force_then_compare [D,S,D,X,Q,X];

End Example

end

Registers

The Registers block is used for testers that use registers to control the formats
applied to particular tester pins.

Format registers are potentially as wide as the number of ATE pins declared
in the preceding Signals block. On input, the Registers block pin list may
specify any subset of the ATE pins. On output, the WGL Out Converter adds
every declared ATE pin to the pin list. Each column of each register may
contain a format name declared in a preceding Formats block or a hyphen
character indicating unspecified contents. The binding of formats to pins is
determined by the correspondence of the position in the register declaration to
the position in the pin list. Each register has a name that must be unique
among all the registers. Specific register names, as well as format names, and
ATE pin names, are tester specific.

The syntax of the Registers block is:

register (PinList)
RegisterDecl
end

A complete BNF syntactical representation of the Registers block follows:

Registers ::= “register” “(” PinList “)” { RegisterDecl } “end”

Waveform Generation Language

6-78 Getting Started, Vol. I, R8.1

PinList ::= <atepinName> { “,” <atepinName> }

RegisterDecl ::= <registerName> “:” “[” { FormatSpec } “]” “;”

FormatSpec ::= (<formatName> | “-”)

Where <atepinName> is an identifier or string previously declared in the
atepin clause of a Signals block, <registerName> is an identifier or string
unique among the register declarations, and <formatName> is an identifier or
string previously declared in a Formats block.

An example of a WGL Registers block is:

Start Example

register (atepin1, atepin2, atepin3, atepin4)
ForceReg1 : [- non_return_to_zero return_to_zero -];
ForceReg2 : [return_to_one - - -];
CompareReg1 : [- - - return_to_inhibit];

End Example

end

Pin Groups

The Pin Groups block is used to associate ATE pins named in the Signals
block with entities called pin groups.

A pin group is a collection of tester pins that share a common format and set of
timing generators (or strobes). Pin group assignments are normally made
during the resource allocation phase of a WaveBridge run. Pin group names
and attributes, however, are defined in the pingroup sub-block of the ATE
Constraint block of the TCL file. Some testers may have different formatting
and timing capabilities associated with pins on pin cards. Those testers
organize their pin groups along the lines suggested by the pin cards. See the
“Test Control Language” chapter, found in this guide, for more information on
how to name pin groups and assign attributes.

A complete BNF syntactical representation of the Pin Groups block follows:

PinGroups := “pingroup” { PinGroupDecl } “end”

PinGroupDecl := <pinGrpName> “:” “[” [PinGroupList] “]” “;”

Getting Started, Vol. I, R8.1 6-79

Waveform Generation Language

PinGroupList := <pinElemName> { “,” < pinElemName > }

Any pin that is not explicitly assigned to a named pin group defined in the
TCL file is assigned automatically to the appropriate default pin group, listed
in Table 9.

NOTE
The functions listed in Table 9 apply only to automatically defined
pin groups; by definition the pins in these groups are not specifically
assigned to another group.

Below is an example of a Signals block mapping signals to ATE pins, with a
Pin Groups block associating the ATE pins named in the Signals block with
pin groups defined in the Pin Groups block.

Table 9. Default pin groups

Pin Group Function

IPIN Used as a synonym for all ATE pins that have the direction
input and that are not explicitly assigned to another pin
group.

OPIN Used as a synonym for all ATE pins that have the direction
output and that are not explicitly assigned to another pin
group.

IOPIN Used as a synonym for all ATE pins that have the direction
bidir and that are not explicitly assigned to another pin
group.

Waveform Generation Language

6-80 Getting Started, Vol. I, R8.1

An example Signals block mapping signals to ATE pins follows:

Start Example

signal
clk : input atepin[P1:1 tg[BCLK1, CCLK1]];
sig1 : input atepin[P2:2 tg[ACLK1]];
sig2 : input atepin[P3:3 tg[ACLK1]];
sig3 : output atepin[P4:4 tg[WSTRB1]];
sig4 : output atepin[P5:5 tg[WSTRB1]];
sig5 : bidir atepin[P6:6 tg[BCLK2, CCLK2, WSTRB2,

DREL1, DRET1]];
end

pingroup
IPIN : [P1, P2, P3];
OPIN : [P4, P5];
IOPIN : [P6];
GRP0 : [P1];
GRP1 : [P2, P3];
GRP2 : [P4, P5];
GRP3 : [P6];

End Example

end

It is an error if a pin group element name has not been previously defined as
an ATE pinof a signal in the Signals block.

TimeGens

The TimeGens block is used to define the tester-specific timing generators for
a tester. A timing generator is used to specify the time values for edge
placement in waveform formats.

The syntax of the WGL TimeGens block is:

timegen
TgDecl
end

Getting Started, Vol. I, R8.1 6-81

Waveform Generation Language

A complete BNF syntactical representation of the TimeGens block follows:

TimeGens ::= “timegen” { TgDecl } “end”

TgDecl ::= <timeGenName> [“[” <edgeCount> “]”] “:” TgType “;”

TgType ::= (“force” | “compare” | “direction”)

TimeGenDecl is composed of a <timeGenName>, such as WSTRB1[2], followed
by an optional edge count specifier, followed by a colon (:), followed by one of
the following reserved words: force, compare, or direction.

An example of a WGL TimeGens block is:

Start Example

timegen
ACLK1 : force;
BCLK1 : force;
CCLK1 : force;
WSTRB1[2]: compare;
DRE1[2]: direction;

End Example

end

TimingSets

The TimingSets block is used to define the tester-specific timing edges
required to represent the timing waveforms of the hardware design on a
tester. Each timing set has a number and a set of values for the timing
generators.

The syntax of the WGL TimingSets block is:

timeset <tsNumber>
TgAssign
end

Waveform Generation Language

6-82 Getting Started, Vol. I, R8.1

A complete BNF syntactical representation of the TimingSets block follows:

TimingSets ::= “timeset” <tsNumber> { TgAssign } end”

TgAssign ::= <timeGenName> [“[” <edgeNumber> “]”] “:=” TimeReference
[“repeat” <repeatCount> } “;”

TimeReference ::= (Time | <variableName>)

Time ::= <timeValue> Unit

Unit ::= (“ps” | “ns” | “us” | “ms” | “sec”)

TgAssign is composed of an existing timing generator name (having been
defined in the TimeGens block, see “TimeGens” on page 6-80), followed by an
optional numeric value for edge number enclosed in brackets ([]), followed by
an assignment operator (:=), followed by a numeric value for time expressed
in a supported unit of measurement or a variable having been previously
defined in the ExprSet sub-block of an EquationSheet block. (See “ExprSet” on
page 6-57.)

NOTE
A variable used in the TimingSets block must have a value that is
meaningful when expressed in units of time.

Getting Started, Vol. I, R8.1 6-83

Waveform Generation Language

An example of a WGL TimingSets block is:

Start Example

timeset 1
ACLK1 := 10ns;
BCLK1 := 20ns;
CCLK1 := 80ns;
WSTRB1[1]:= 30ns;
WSTRB1[2]:= 80ns;

end

timeset 2
ACLK1 := 10ns;
BCLK1 := 50ns;
CCLK1 := 20ns;
WSTRB1[1]:= 40ns;
WSTRB1[2]:= 60ns;

End Example

end

You can use variables in the place of literal time values in the TimingSets
block. The variables must have been previously defined in an ExprSet
sub-block of an EquationSheet block. (See “ExprSet” on page 6-57.)

You can also substitute variables for the literal time value associated with a
previously defined timing generator. (See “TimeGens” on page 6-80.) You can
intermix literal time values and variables in the TimeSets block.

The following example shows how variables that were defined in an
EquationSheet block can be used in a TimeSets block. The use of variables is
highlighted by bold typeface.

Waveform Generation Language

6-84 Getting Started, Vol. I, R8.1

Start Example

timeset 0 {ts1}
tgf1 [1] := 0pS;
tgf1 [2] := 20nS;
tgc1 [1] := tclk;
tgc1 [2] := 90nS;
tgd1 [1] := 0pS;
tgd1 [2] := 100nS;
tgf2 [1] := t1;
tgf2 [2] := t2;
tgd2 [1] := 0pS;
tgf3 [1] := 25nS;
tgf3 [2] := 45nS;
tgd3 [1] := 0pS;
tgf4 [1] := 30nS;
tgd4 [1] := 0pS;
tgc5 [1] := t3;
tgc5 [2] := 52nS;
tgd5 [2] := 0pS;

End Example

end

Additional Features
WGL supports additional features that can provide further control over the
data contained in the WDB. These features let you use predefined WGL
statements in various places throughout the WGL program, bring data into
the current WGL file from other WGL files, and insert comments into the
WGL file.

Macros
A WGL macro is a body of valid WGL statements that you can save for later
use by giving the body of statements a macro name (<macroName>). The
WGL statements become the body of the macro, (<macroBody>). This process
defines the contents of the macro. You can recall the contents of the macro
that you defined by using a macro invocation. Invoking a macro is essentially
calling on your defined macro by name. Neither the macro definition nor the
macro invocation becomes part of a WDB.

Getting Started, Vol. I, R8.1 6-85

Waveform Generation Language

Using a macro is a two-step process. You must first define the macro with a
macro definition. After you have defined the macro, you can invoke it as many
times as you want, in any syntactically correct place in the WGL program,
with the macro invocation.

Macro Definition

The Macro Definition feature follows the same block structure format used by
the WGL program blocks. The following rules apply to the macro definition:

■ You cannot define other macros within a <macroBody>.

■ You cannot invoke a macro recursively; you must not define a macro that
invokes itself.

■ You can use a parameter in the macro to indicate places in the macro
definition where values are to be substituted when the macro is invoked
and expanded.

■ You can define macros anywhere in the WGL program, but for ease of WGL
program maintenance, it is a good idea to define macros at the beginning of
the WGL file, right after the beginning program delimiter, waveform.

■ You can define a macro that invokes another, previously defined macro.

The syntax of the WGL Macro Definition feature is:

macro <macroName> (MacroParameterList)
<macroBody>
endmacro

A complete BNF syntactical representation of the Macro Definition feature
follows:

MacroDefinition ::= “macro” <macroName> [“(” MacroParameterList “)”]
<macroBody> “endmacro”

MacroParameterList ::= <macroParameter> { “,” <macroParameter> }

In its simplest form, the Macro Definition feature allows you to store a text
string under a reference name. (See the example on page 6-100.) The text
string may be quite lengthy, cumbersome, and difficult to remember. You can
retrieve the text string by calling upon the reference name. This is what
happens when you create a macro definition and call up the contents of the

Waveform Generation Language

6-86 Getting Started, Vol. I, R8.1

<macroBody> using the Macro Invocation feature. Calling up the contents of
the macro is often referred to as “expanding” the macro because the contents
of the macro are inserted in-line into the code at the place they are called.

A parameter substitution is specified by the ampersand character (@),
followed by the <macroParameter> from the MacroParameterList. The value
to be substituted into the @<macroParameter> is taken from the
MacroParameterList, on the first line of the macro definition. The values for
the MacroParameterList are supplied from a list of arguments in the macro
invocation. Each Macro Definition can have a maximum of 128
<macroParameter>s.

Macro Invocation

The Macro Invocation feature is the counterpart to the Macro Definition
feature. To invoke a defined macro, use the name of the defined macro
(<macroName>) followed by an optional list of arguments, the contents of
which can be substituted into the optional macro parameter list of the Macro
Definition feature. If you use the argument list, the macro parameter list
must be correspondingly defined in the macro definition.

The syntax of the WGL Macro Invocation feature is:

<macroName> [(ArgumentList)]

A complete BNF syntactical representation of the Macro Invocation feature
follows:

MacroInvocation ::= <macroName> [“(” ArgumentList “)”]

ArgumentList ::= <identifier> { “,” <identifier> }

Getting Started, Vol. I, R8.1 6-87

Waveform Generation Language

Definition and Invocation without Parameters

Displayed below is an example of a simple macro definition without parameter
substitution from a macro parameter list. This example shows four separate
macros: add, sub, mul, and div.

Start Example

macro add
00011111

endmacro

macro sub
10101101

endmacro

macro mul
11100001

endmacro

macro div
10111000

End Example

endmacro

An example of the macro invocation without parameter substitution is:

Start Example

pattern load1 (instBus)
vector(1) := [add];
vector(2) := [sub];
vector(3) := [mul];
vector(4) := [div];
vector(5) := [add];
vector(6) := [add];
vector(7) := [mul];
vector(8) := [sub];

End Example

end

Waveform Generation Language

6-88 Getting Started, Vol. I, R8.1

An example of the values that exist after macro expansion is:

Start Example

pattern load1 (instBus)
vector(1) := [00011111];
vector(2) := [10101101];
vector(3) := [11100001];
vector(4) := [10111000];
vector(5) := [00011111];
vector(6) := [00011111];
vector(7) := [11100001];
vector(8) := [10101101];

End Example

end

Definition and Invocation with Parameters

You can invoke a macro and substitute values into the macro parameter list by
using the optional argument list with the macro invocation. This gives you
added flexibility when using the macro to perform a repetitive task, such as
filling vectors with pattern data.

The following is a macro definition with parameter substitution from a macro
parameter list. This example uses a macro to fill vectors with pattern data.
The <macroParameter> s receives a value from a list of arguments in the
macro invocation diagonal_fill displayed in the subsequent example.

Getting Started, Vol. I, R8.1 6-89

Waveform Generation Language

An example of a macro definition with parameter substitution from the
MacroParameterList follows:

Start Example

macro diagonal_fill (s)
vector(+) : [0000000@s];
vector(+) : [000000@s0];
vector(+) : [00000@s00];
vector(+) : [0000@s000];
vector(+) : [000@s0000];
vector(+) : [00@s00000];
vector(+) : [0@s000000];
vector(+) : [@s0000000];

End Example

endmacro

An example of a macro invocation with the argument list for substitution into
the macro parameter list of the macro definition follows:

Start Example

signal
data[7..0] : input radix binary;

end

pattern memCheck (data)
diagonal_fill(0);
diagonal_fill(1);
diagonal_fill(Z);
diagonal_fill(X);

End Example

end

Waveform Generation Language

6-90 Getting Started, Vol. I, R8.1

An example of the values that exist for the first three macro invocations after
expansion of the macro in the previous example is:

Start Example

pattern memCheck (data)
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];
vector(+) : [00000000];

vector(+) : [00000001];
vector(+) : [00000010];
vector(+) : [00000100];
vector(+) : [00001000];
vector(+) : [00010000];
vector(+) : [00100000];
vector(+) : [01000000];
vector(+) : [10000000];

vector(+) : [0000000Z];
vector(+) : [000000Z0];
vector(+) : [00000Z00];
vector(+) : [0000Z000];
vector(+) : [000Z0000];
vector(+) : [00Z00000];
vector(+) : [0Z000000];
vector(+) : [Z0000000];
. . .

End Example

end

Getting Started, Vol. I, R8.1 6-91

Waveform Generation Language

Include Files
Data that you use repeatedly, for many different WGL programs, can be stored
in separate ASCII files and called upon by WGL programs. This lets you
create a library of such data files, with each file containing specific types of
data in WGL syntax. To include this data into a WGL program, you use the
Include file feature of WGL.1

Like a WGL macro, Include files are called by an invocation statement, in this
case an “include” invocation. Also like WGL macros, when the WGL In
Converter is run, Include files are not translated and saved to the database.

You can only invoke a currently existing WGL file that contains syntactically
correct WGL statements. The Include file can contain any valid WGL
statements.

The syntax of the Include Invocation feature is:

include <file name>;

A complete BNF syntactical representation of the Include file feature follows:

IncludeInvocation ::= “include” <fileName> “;”

An example file named buses, that can be invoked in a WGL program to be
used as an Include file:

Start Example

data [31..0] : birdir;

End Example

addr [31..0] : bidir;

Use the WGL reserved word include to invoke an Include file. When you
invoke the Include file, you must specify the file name. You can also use an
absolute or relative path when naming the file to be included. The entire
invocation is called an include invocation. There cannot be any other WGL
syntax, including comments or annotations, on the same line as an include
invocation.

1. Binary pattern files cannot be included in the WGL program via an Include file statement .
See “Binary WGL” on page 6-108 for information on how to include binary formatted files in a
WGL file.

Waveform Generation Language

6-92 Getting Started, Vol. I, R8.1

The following is an example WGL program with an Include file invocation for
a file named buses.dat:

Start Example

waveform busArbitration
 signal
 include “busses.dat”;

End Example

end

Annotations
The Annotations feature allows you to insert comments that are translated for
inclusion in the WDB when the WGL In Converter is run. It is possible to view
these annotations either in the WGL file or by using WaveMaker’s editors to
view the corresponding WDB.

The annotations are enclosed within braces ({ }). Generally speaking, if the
annotation occupies the same line as another WGL statement, the annotation
is associated with the characteristic described by the WGL statement. If the
annotation occupies a line exclusively, with no other WGL statement on the
same line, the annotation is associated with the WGL statement immediately
following.

The syntax of the Annotations feature is:

{ . . . }

A complete BNF syntactical representation of the Annotations feature follows:

Annotation ::= “{” <any explanatory text> “}”

Getting Started, Vol. I, R8.1 6-93

Waveform Generation Language

An example of annotations in a WGL program is:

Start Example

timeplate read period 300ns
clock := input [0ps:D, 50ns:U, 100ns:D, 150ns:U, 200ns:D,250ns:U];
in := input [0ps:D, 30ns:U]; {in to clock Tsu is 10ns..40ns}
{Don’t expect data on out until at least 20ns after clock

rising edge}
out := output [0ps:X, 70ns:H];

End Example

end

WGL associates the annotations with WDB entities (or “objects”) in the
database. If you add annotations to the WDB using WGL, you must take care
that the annotations are placed precisely in the WGL program in areas that
support the retention of annotations, or the annotations may be lost or
associated with the wrong object. For a complete explanation of how WGL
annotations work, see “Using Annotations in WGL” on page 6-105.

Global Mode
The Global Mode feature is used to control attributes of the WDB globally, or
in every occurrence of the object with which the attribute is associated.
Currently, the only attribute you can control with the Global Mode feature is
the pmode attribute.

pmode Attribute

The pmode attribute defines the state value of the first cycle for those cycles
that adopt their state value from the previous cycle (the P Mode). This feature
permits you to tailor the initial state value of waveforms that, by default,
derive their initial state value from the previous cycle.

Table 10 defines the supported pmode attribute options. Refer to Table 7, on
page 6-75, for a complete list of TDS state characters.

Waveform Generation Language

6-94 Getting Started, Vol. I, R8.1

Table 10. P Mode definitions

P Mode Setting P is Replaced by Definition

Previous Force
(P_LAST_FORCE)

a force state
(D, U, N, or Z)

If force pattern data for the cycle (associated with the same
signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:
P is replaced by the last force state value on the same
signal (D, U, N, or Z), whether the previous force state is
itself a result of substitution, or is a fixed value.

Previous Driving
(P_LAST_DRIVE)

D, U, or Z If force pattern data for the cycle (associated with the same
signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:
P is replaced by the last D or U state on the same signal,
whether the previous force state is itself a result of
substitution, or is a fixed value.

Previous, if Force,
else Z
(P_FORCE_OR_Z)

last force state
value, else Z

P is replaced by the last state value on the same signal, if
the last state value is force (D, U, or N) or monitor (d, u, or
n). If the previous state value is other than the above, P is
replaced by Z.

Advantest
(P_ADVANTEST)

a force state If force pattern data for the cycle (associated with the same
signal) is Z:
P is replaced by Z.

If force pattern data for the cycle (same signal) is not Z:
P is replaced by the previous force state if that state is D, U,
N, or Z.

P is replaced by D if the previous state is L or T.

P is replaced by U if the previous state is H or X, but ignores
previous X states that follow force states and are not at the
start of the cycle.

Getting Started, Vol. I, R8.1 6-95

Waveform Generation Language

The syntax of the WGL P Mode attribute is:

pmode [PModeOption];

A complete BNF syntactical representation of the P Mode Attribute feature
follows:

GlobalMode ::= “pmode” “[” PmodeOption “]” “;”

PmodeOption ::= (“dont_care” | “last_force” | “last_drive” | “force_or_z” |
“advantest” | “ims”)

An example of a pmode attribute definition is:

Start Example

waveform test.wdb
pmode[dont_care];
signal

a : bidir;
end
timeplate io period 500ns

a := input [0ps:D, 200ns:S, 300ns:D];
a := output [0ps:P, 250ns:Q, 400ns:T];

end

End Example

end

IMS
(P_IMS)

last force state
value, else Z

For scalar (non-multiplexed) signals, P is replaced by the
last state value on the same signal, if the last state value is
force (D, U, or N) or monitor (d, u, or n). If the previous state
value is other than the above, P is replaced by Z.

For multiplexed signals, P substitution is done after
multiplexing. Thus, P substitution for a P state on a
multiplex member depends on states of other mux
members.

Don’t care
(P_DONT_CARE)

N P is replaced by N state.

Table 10. P Mode definitions (Continued)

P Mode Setting P is Replaced by Definition

Waveform Generation Language

6-96 Getting Started, Vol. I, R8.1

Examples

Using WGL Macros and Include Files to Simplify
Testing

The following examples illustrate the use of include files and macros in a WGL
program used to generate a test for a microprocessor. The WGL program in
example_Test_Chip.wgl contains only the beginning and ending
statements and four include invocations.

An example WGL program using Include files is:

Start Example

#--
file: example_Test_Chip.wgl
#--
An example showing the use of macros and include files, used to generate
a test for a Test_Chip microprocessor
#
waveform Test_Chip_test1

include “signals_Test_Chip.wgl”
include “timing_Test_Chip.wgl”
include “macros_Test_Chip.wgl”
include “patterns_1_Test_Chip.wgl”

End Example

end

Getting Started, Vol. I, R8.1 6-97

Waveform Generation Language

An example WGL Include file containing signal data is:

Start Example

#--
file: signals_Test_Chip.wgl
#--
signal AS : output;

AVEC : input;
A[0..31] : output radix hexadecimal;
BERR : input;
BG : output;
BGACK : input;
BR : input;
CDIS : input;
CLK : input;
DBEN : output;
DS : output;
DSACK0 : input;
DSACK1 : input;
D[0..31] : bidir radix hexadecimal;
ECS : output;
FC[0..2] : input;
HALT : bidir;
IPEND : output;
IPL[0..2] : input;
OCS : output;
RESET : bidir;
RMC : output;
”R/W” : output;
SIZ[0..1] : output;

#
We divide the data bus up into the instruction and data groups
#
 Inst [D[0..15]] : radix hexadecimal;
 Data [D[16..31]] : radix hexadecimal;

End Example

end

Waveform Generation Language

6-98 Getting Started, Vol. I, R8.1

An example WGL Include file containing timing data is:

Start Example

#--
file: timing_Test_Chip.wgl
#--
timeplate read period 120nS

CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 40nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:H, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 70nS:D, 110nS:U];
Inst,Data := bidir[0pS:X, 80nS:S, 130nS:X];
DBEN := output[0pS:X, 50nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate write period 120nS
CLK := input[0pS:U, 20nS:D, 40nS:U, 60nS:D, 80nS:U, 100nS:D];
A[0..31] := output[0pS:X, 20nS:Q, 115nS:X];
FC[0..2] := input[0pS:P, 20nS:S];
SIZ[0..1] := output[0pS:X, 20nS:Q, 115nS:X];
ECS, OCS := output[0pS:X, 8nS:L, 25nS:X];
AS := output[0pS:X, 40nS:L, 100nS:X];
DS := output[0pS:X, 60nS:L, 100nS:X];
”R/W” := output[0pS:X, 10nS:L, 115ns:X];
DSACK0, DSACK1 := input[0pS:U, 65nS:D, 110nS:U];
Inst,Data := output[0pS:X, 40nS:Q, 130nS:X];
DBEN := output[0pS:X, 25nS:L, 115nS:X];
BERR, HALT, RESET := input[0pS:U, 80nS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N, 45nS:D, 75nS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

Getting Started, Vol. I, R8.1 6-99

Waveform Generation Language

timeplate idle period 40nS
CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:P];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACK0, DSACK1 := input[0pS:U];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT, RESET := input[0pS:U];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

end

timeplate reset period 40nS
CLK := input[0pS:U, 20nS:D];
A[0..31] := output[0pS:X];
FC[0..2] := input[0pS:N];
SIZ[0..1], ECS, OCS, AS, DS, “R/W” := output[0pS:X];
DSACK0, DSACK1 := input[0pS:N];
Inst, Data := output[0pS:X];
DBEN := output[0pS:X];
BERR, HALT := input[0pS:N];
RESET := input[0pS:D];

asynch inputs
AVEC, BGACK, BR, CDIS, IPL[0..2] := input[0pS:N];

asynch outputs
BG, IPEND, RMC := output[0pS:X];

End Example

end

Waveform Generation Language

6-100 Getting Started, Vol. I, R8.1

An example WGL Include file containing macros is:

Start Example

#--
file: macros_Test_Chip.wgl
#--
#
Here are macros defining read and write cycles in terms of only the data
that changes, in the order that you might want to fill them out.
macro readcycle(instr, addr, data16_32, fc0_2, size)
 vector(+, read) :=

[- - @addr - - - - - - - - - -
 @instr ----
 @data16_32 ---- -
 @fc0_2 - - - --- - - - - -
 @size];

endmacro
macro writecycle(instr, addr, data16_32, fc0_2, size)
 vector(+, write) :=

[- - @addr - - - - - - - - - -
---- @instr
---- @data16_32 -
 @fc0_2 - - - --- - - - - -
 @size];

endmacro
macro idlecycle
 vector(+, idle) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];
endmacro
macro resetcycle
 vector(+, reset) := [- - -------- - - - - - - - - - - ---- ----

---- ---- - --- - - - --- - - - - - --];

End Example

endmacro

Getting Started, Vol. I, R8.1 6-101

Waveform Generation Language

NOTE
The hyphens (-) in the previous example are placeholders for pattern
data supplied for the macros readcycle, writecycle, idelcycle, and
resetcycle by the WGL Include file shown in the example below.

An example WGL Include file containing pattern data is:

Start Example

#--
file: patterns_1_Test_Chip.wgl
#--
#
here are the patterns for test1
pattern group_ALL (AS,AVEC,A,BERR,BG,BGACK,BR,CDIS,CLK,DBEN,DS,DSACK0,DSACK1,

Inst:I,Inst:O,Data:I,Data:O,ECS,FC,HALT:I,HALT:O,

IPEND,IPL,OCS,RESET:I,RESET:O,RMC,R/W,SIZ)
repeat 512 resetcycle
readcycle(B61B, B6EE13D6, FCA3, 100, 00)
writecycle(9691, F0201827, A308, 111, 10)
idlecycle
readcycle(4281,F0201827,4314,111,10)
writecycle(30C2,E4394013,4460,011,11)
readcycle(EB3C,86F78F4C,F616,100,11)
writecycle(EE53,9C32C7BA,E9EC,101,00)
readcycle(BF16,D44C5EB1,DF57,000,11)
writecycle(8D54,E7AB41EC,2927,100,00)
readcycle(7ABC,8316DF68,0744,001,10)
writecycle(69D0,AE31A3A2,0DF0,001,01)
idlecycle
readcycle(7A64,D3B28D8E,A4D6,011,11)
writecycle(4F7E,CFFE12F7,4850,011,11)
readcycle(9A5F,225D2C89,F66B,010,11)
writecycle(619D,7721483A,4862,000,10)

End Example

end

Waveform Generation Language

6-102 Getting Started, Vol. I, R8.1

Using WGL to Support Scan Test Hardware
This example WGL file illustrates a simple scan test using the scan hardware
associated with the device shown in Figure 3.

The device in Figure 3 has a number of input, output, and bidirectional
signals, including CLK, MODE, SC_IN, and SC_OUT. Internal cells on the scan
chain are declared in the scanCell block of the following example WGL files.

Figure 3. Example device with scan hardware

D[0]

D[1]

D[2]

D[3]

D[4]

D[5]

D[6]

D[7]

A

B

C

SC_IN

CLK

SC_OUT

MODE

1 2 3 4

FF1 B2

LTCH[]

Getting Started, Vol. I, R8.1 6-103

Waveform Generation Language

A partial example WGL file supporting scan test is:

Start Example

waveform scan_example
signal

A : input;
B : input;
C : output;
SC_IN : input;
SC_OUT : output;
CLK : input;
MODE : input;
D[0..7] : bidir;

end
scanCell

FF1 ;
B2 ;
LTCH[1..4] : radix hexadecimal;

end
scanchain

chain1 [SC_IN, LTCH[1], FF1, !, B2, LTCH[4], LTCH[3], LTCH[2],
SC_OUT];

end
scanState

stateX := ;
state1 := FF1(1) B2(0) LTCH(A);
state2 := FF1(1) B2(1) LTCH(X);
state3 := ALLSCAN(010101);

end
. . .

The scan chain shift order is described in the scanchain block above. Note the
inverter placed in the chain between cells FF1 and B2. The states that are set
in these cells by scan-in operations or tested during scan-out operations are

End Example

declared in the scanState block.

The test waveform consists of two parallel vectors, followed by a six-cycle scan
sequence that shifts a new state into the internal cells while simultaneously
sampling the scan chain output and comparing it with another expected state.
At the end of the scan operation, two more parallel vectors are applied and the
scan is repeated with different input and output states.

A partial example of WGL file with scan entities is:

Waveform Generation Language

6-104 Getting Started, Vol. I, R8.1

Start Example

timeplate tp1 period 500nS
A, B, SC_IN, MODE, D := input[0pS:P, 100nS:S];
C, SC_OUT, D := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end
timeplate scanPlate period 500nS

A, B, SC_IN := input[0pS:P, 100nS:S];
SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
D := input[0pS:P];
MODE := input[0pS:P, 100nS:U];
C, D := output[0pS:X];
CLK := input[0pS:D, 250nS:U];

end
pattern group_ALL (A, B, C, SC_IN, SC_OUT, MODE, D:I, D:O)

vector(tp1) :=[1 0 X X X 0 11010000 --------];
vector(tp1) :=[1 0 0 X X 0 -------- 11111110];
scan(scanPlate) :=[0 1 - - - - -------- --------],

input[chain1:state1],
output[chain1:stateX];

vector(tp1) :=[1 1 X X X 0 00011101 --------];
vector(tp1) :=[1 1 0 X X 0 -------- 01010101];
scan(scanPlate) :=[0 0 - - - - -------- --------],

input[chain1:state3],
output[chain1:state2];

vector(tp1) := [0 0 X X X 0 11010011 --------];
vector(tp1) := [1 1 0 X X 0 -------- 01010101];

end

End Example

end

In the example above, two TimePlates are used: tp1 and scanPlate. tp1 is
used on parallel pattern rows. scanPlate is used during scan operations.
Note that S and Q shapes appear on those tracks associated with scan in and
out signals. Signals A and B use pattern data defined in the scan rows.

The WGL Patterns block illustrates parallel vectors interspersed with scan
operations. The scan vectors refer to the scan TimePlate and specify which
states are scanned in and out using the specified chain. For example, the first
scan vector scans in state1 and simultaneously scans out stateX. Since the

Getting Started, Vol. I, R8.1 6-105

Waveform Generation Language

specified chain is six cells in length, the scan vectors each have a duration of
six cycles.

Using Annotations in WGL
In WGL syntax, annotations are “legal” anywhere, as long as they are enclosed
in braces ({ }). In this sense, annotations are treated exactly like WGL
comments. However, if these annotations are not placed precisely, they may be
excluded from the WDB created when you run the TDS WGL In Converter. If
you then run the TDS WGL Out Converter to change the WDB back to a WGL
file that is editable, you may find that some of the annotations have been lost.

The example below shows a WGL file with annotations added in various
locations throughout the file. The WGL file is converted to a WDB using the
WGL In Converter, and then converted back to a WGL representation (as
shown in the next example) of the same, unmodified WDB. You can see that,
depending on their original location in the WGL file, some of the annotations
remain unchanged, some have been moved, and some have been lost.

Annotations have been added to the example WGL file named anno.wgl. All
of the annotations that have been added are syntactically legal, but those that
are lost after conversion to a WDB are labeled { lost }.

Waveform Generation Language

6-106 Getting Started, Vol. I, R8.1

An example WGL file with annotations, before conversion to WDB is:

Start Example

{ lost }
waveform wdb1 { lost }

{ lost }

signal { lost }
a { a1 } : input;
b : input; { b1 }
c : {c1} input;

{c2}d : input;
e[1..10{e1}] : input;

end { append to last sig }

scancell
cell1; { sc1 }
cell2; { sc2 }
reg1; { reg1 }

end { lost }

scanchain
chain1 {c1} [a, cell1 {c2}]; { lost }

end { lost }

scanstate
state1 {moved} := cell1(1) {moved} cell2(1); {s3}

end { lost }

timeplate tp1 {lost} period {t2} 200ns {t3}
a{s1},b{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s4}
c{s5},d{lost} := input[0ps:D {lost}, 50ns:S, 100ns:D]; {s6}

Getting Started, Vol. I, R8.1 6-107

Waveform Generation Language

end

pattern load1 (a)
vector (+,tp1) := [1]; {v1}
vector (+,tp1) := {v2} [1];
vector {v3} (+,tp1) := [1];
vector (+,tp1{v4}) := [1];

end

End Example

end {lost }

In the following example, the original WGL file, anno.wgl, has been
converted to a WDB and then converted back to a WGL file, using the WGL
Out Converter. Note that all annotations labeled { lost } are no longer
preserved in the database.

Start Example

waveform anno.wdb

signal
 a : input; { a1 }
 b : input; { b1 }
 c : input; {c1}
{c2}
 d : input;
 e [1..10] : input; {e1}
{ append to last sig }
end

scanCell
 cell1 ; { sc1 }
 cell2 ; { sc2 }
 reg1 ; { reg1 }
end

scanChain
 chain1 [a, cell1]; {c1}
{c2}
end

scanState
 state1 := ALLSCAN(11X); {moved}

Waveform Generation Language

6-108 Getting Started, Vol. I, R8.1

{moved}
{s3}
end

timeplate tp1 period 200nS {t2}
{t3}
{s1}
 a, b := input[0pS:D, 50nS:S, 100nS:D]; {s4}
{s5}
 c, d := input[0pS:D, 50nS:S, 100nS:D]; {s6}
end

pattern load1 (a,b,c,d,e)
 vector(0, 0pS, tp1) := [1 - - - ----------]; {v1}
 vector(1, 200nS, tp1) := [1 - - - ----------]; {v2}
 vector(2, 400nS, tp1) := [1 - - - ----------]; {v3}
 vector(3, 600nS, tp1) := [1 - - - ----------]; {v4}
end

End Example

end

Binary WGL
A binary format of the pattern vectors, to be used in place of ASCII pattern
data, is supported within WGL. This capability allows you to use WGL binary
pattern data from a CAE simulation1 as input to TDS.

The binary pattern data in the Pattern section provides a compact data
representation for users who are not concerned about readability but who are
concerned about file size and TDS run time. WGL binary pattern data has the
following advantages over WGL ASCII data:

■ A large number of vectors take up less disk space.

■ The WGL In Converter reads binary data quicker than ASCII data.

■ Scan state vector information is provided directly on a vector row. (In
ASCII form, scan state vector information cannot be provided directly on a

1. Various CAE simulators output the binary formatted pattern data as specified in this sec-
tion.

Getting Started, Vol. I, R8.1 6-109

Waveform Generation Language

vector row in the pattern section but must be de-referenced through a scan
state name. This results in large amounts of scan data in the upper portion
of the WGL file, making it less readable.)

WGL Binary Interface
Binary pattern data may be specified in a separate file (preferred) or included
in the WGL file.1 Binary pattern files are included in the WGL program via a

1. Do not edit a WGL file that has binary pattern data; null pattern bits may be deleted by the
editor.

Figure 4. Using Binary Pattern Data

CAE
Simulator

Binary pattern
file (in WGL

format)

WGL Out
ConverterWDB

II

WGL file with
binary

pattern data

WDB
I

WGL file that
contains

binary data
or references

a binary
pattern file

WGL In
Converter

WaveBridge
 (or other

TDS
process)

Test program

WDB
II

Waveform Generation Language

6-110 Getting Started, Vol. I, R8.1

BinaryPattern file command, not via an Include file statement. (You cannot
mix ASCII pattern vectors with binary pattern data.)

Binary WGL is a subset of ASCII WGL and there is not an exact one-to-one
correspondence between ASCII and binary WGL. Some WGL structures are
not supported in binary, including symbolic assignments, macros, vector
labels, and comments.

The binary pattern data can be viewed with WaveMaker and saved in WDB
format. In addition, using the WGL Out Converter, the binary pattern data
can be saved in ASCII format within a WGL Patterns block.

Including Binary Files

To signify that binary pattern data is supplied in place of the Patterns block
within WGL, use the BinaryPattern command, followed by the binary data.

BinaryPattern; <carriage return>

If the binary pattern data is supplied in a file separate from the WGL file,
then the file parameter must also be specified, followed by the file name where
the binary pattern file resides.

BinaryPattern file:=binary.data; <carriage return>

The following example WGL file shows the BinaryPattern command. WGL
statements (including the ScanState and Patterns block) that are not used
with binary pattern data are shown as comments. (That is, preceded with a #.)

Start Example

waveform scan_example

signal
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;
CLK : input;

end

scanCell
FF1 ;
B2 ;

Getting Started, Vol. I, R8.1 6-111

Waveform Generation Language

C1 ;
D1 ;

LTCH[1..4] : radix hexadecimal;
end

scanchain
chain1 [SC_IN, LTCH[1], LTCH[4], LTCH[3], LTCH[2], SC_OUT];
chain2 [SC_IN2, FF1, B2, C1, D1, SC_OUT2];

end

#scanState
state1 := chain1(1101) chain2(1001);
state2 := chain1(1011) chain2(0001);
state3 := chain1(0X00) chain2(1X10);
state4 := chain1(0X00) chain2(1XXX);
state5 := chain1(0101) chain2(0000);
state6 := chain1(XXXX) chain2(XXXX);
#end

timeplate tp1 period 500nS
SC_IN, SC_IN2 := input[0pS:P, 100nS:S];
SC_OUT, SC_OUT2 := output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
CLK := input[0pS:D, 250nS:U];

end

binarypattern file := testd.tmp;

#pattern group_ALL (CLK, SC_IN, SC_OUT, SC_IN2, SC_OUT2)
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state1], output[chain1:state3],
input[chain2:state1], output[chain2:state3];
vector(tp1) := [- X X X X];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],

Waveform Generation Language

6-112 Getting Started, Vol. I, R8.1

input[chain1:state2], output[chain1:state4],
input[chain2:state2], output[chain2:state4];
vector(tp1) := [- X X X X];
scan(scanPlate) := [- - - - -],
input[chain1:state5], output[chain1:state6],
input[chain2:state5], output[chain2:state6];
vector(tp1) := [- X X X X];
#end

End Example

end

Binary File Format
The following sections illustrate ASCII WGL formats and equivalent binary
WGL formats. If you are reading binary format files (including binary pattern
data in a WGL file), you do not need to know this information. However, if you
will be writing binary files, you must adhere to the following formats.

The following format conventions are used in this section:

■ For readability, characters are shown with the entire string in quotes. In
the binary file, the characters are in binary format.

■ Numbers are shown in hexadecimal, instead of binary; the 0x preceding a
value indicates hexadecimal notation.

■ Spaces are added for clarity.

■ Braces and brackets are used as described in “WGL Syntax Notation
Conventions”.

The binary format is processed using standard I/O routines; the binary file is
not parsed. In addition, the binary file is not context sensitive.

Definitions

To ensure that the binary format is machine independent, data bits must be
written out consistently across machines. The following definitions are
required to ensure machine independence.

Getting Started, Vol. I, R8.1 6-113

Waveform Generation Language

Line Format

All lines in the WGL binary section conform to the following format.

byte_count line_type {rest-of-line}

The line length is specified by the byte_count at the beginning of each line. (No
specific line termination is provided.)

Line Type

The line_type field is an unsigned short which specifies the intent of the line.
Table 13 shows the mapping.

Table 11. Binary Definitions

Item Description

byte 8 bits (unsigned) MSB to LSB

short 16 bits (unsigned) MSB to LSB

long 32 bits (unsigned) MSB to LSB

char 8 bits (unsigned) MSB to LSB

chars Multiple characters

Table 12. Components of Line Format

Item Type Description

byte_count short The length of the line_type and rest-of-line in bytes
(excludes byte_count)

line_type short Byte which describes the line type (See Table 13.)

rest-of-line Varies depending on the line type (See Table 14
through Table 32.)

Table 13. Hexadecimal Values for Each Line Type

Hexadecimal Line Type

0x0000 Vector Line

0x0001 Subroutine

Waveform Generation Language

6-114 Getting Started, Vol. I, R8.1

Line Type Ordering

The binary pattern information must follow the same ordering restrictions
required by ASCII WGL. (See “Patterns” on page 6-38.) That is, the pattern
header is followed by the vectors, which are followed by the subroutine
definitions. In addition, the following restriction must be followed:

■ The version control line is required to be the first line in the file, if a
separate binary file is supplied. Otherwise, the version control line is
expected to immediately follow the BinaryPattern declaration in the WGL
file.

■ Binary WGL requires unique end statements for subroutines, loops, and
patterns.

0x0002 End Pattern

0x0003 Loop

0x0004 End Loop

0x0005 Subroutine Call

0x0006 Skip

0x0007 Scan Parallel

0x0008 Scan Chain

0x0009 Repeat

0x000a Pattern Header

0x000b Annotation

0x000d Map Key

0x000e End Subroutine

0x000f End Binary (ASCII WGL
statements follow)

0x00ff Version Control

Table 13. Hexadecimal Values for Each Line Type (Continued)

Hexadecimal Line Type

Getting Started, Vol. I, R8.1 6-115

Waveform Generation Language

Line Type Description

The following discussion describes the syntax for each of the line types.

Version Control

The version control line denotes the binary file version. It is required to be the
first line in the WGL binary section. (Although not planned, it is possible that
future versions of the binary file may have a different format. All future
readers, however, will be expected to read earlier versions of binary files.) The
format is:

byte_count line_type version_number version_extension

Start Example

End Example

0x0006 0x00ff 0x0001 0x0000

Pattern Header

The WGL Pattern block begins with a pattern header line. This line defines a
pattern name, and a list of signals and directions. The binary format would be
an encoding of this. The general syntax would be:

byte_count line_type name_len name signal_columns
{signal_dir signal_len signal_name bus_flag
[begin_range end_range]}

Table 14. Version Control Line Type

Item Type Description

line_type short 0x00ff

version_number short Version 1 is described in this document.

version_extension short Extension number; initially 0

Waveform Generation Language

6-116 Getting Started, Vol. I, R8.1

Example WGL:

Start Example

End Example

pattern burst (sigA:I, sigA:O, BX)

Equivalent binary:

Start Example

0x0021 0x000a 0x0005 "burst" 0x0003 0x00 0x0004 "sigA" 0x00 0x01 0x0004

End Example

"sigA" 0x00 0x02 0x0002 "BX" 0x00

Table 15. Pattern Header Line Type

Item Type Description

line_type short 0x000a

name_len short Number of characters in pattern group name

name chars Pattern group name

signal_columns short Total number of signal columns for the vectors

signal_dir byte Column direction where:
0x00 = input column for a bidir signal,
0x01 = output column for a bidir signal,
0x02 = column direction is not required

because signal is input or output but not
bidirectional

signal_len short Number characters in signal name

signal_name chars Signal name

bus_flag byte Indicates if a signal is a bus: 0x00 = no; 0x01
= yes

begin_range short First value in range; this field is read only
when bus_flag = 0x01

end_range short Second value in range; this field is read only
when bus_flag = 0x01

Getting Started, Vol. I, R8.1 6-117

Waveform Generation Language

Example WG, illustrating multiplexed signals: The Signal block contains
a multiplexed parent and four multiplexed children.

Start Example

signal
muxsig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;

end

End Example

pattern group_ALL (sig1)

Equivalent binary, illustrating multiplexed signals: signal_columns is
set to four, indicating the total number of columns of pattern bit information
associated with any vector in the pattern block.

Start Example

End Example

0x001a 0x000a 0x0009 “group_ALL” 0x0004 0x02 0x0007 “muxsig1” 0x00

Example WGL, illustrating a bus with no range specification: A data
bus can be listed in the pattern header without specifying the range and order
of the bits. (The range and order specified for a signal within the Signal block
is used if none is given on the pattern header.)

Start Example

signal
sig1 : input;
data[0..7] : input radix binary;

End Example

pattern group_ALL (sig1, data)

Equivalent binary, illustrating a bus with no range specification: As
specified in the Signal block, the range for this bus is from 0 to 7. The binary
format does not require the range to be specified on the pattern header if
vector information for the bus adheres to this ordering. signal_columns is set
to 8 to indicate the total number of columns of pattern bit information
associated with all vectors in the Pattern blocks.

Waveform Generation Language

6-118 Getting Started, Vol. I, R8.1

Also, notice that the bus flag is not set to 0x01 in this example. The bus flag is
set to 0x01 only when a range is being specified for output on the pattern
header.

Start Example

0x001f 0x000a 0x0009 “group_ALL” 0x0009 0x02 0x0004 “sig1” 0x00 0x02 0x0004

End Example

“data” 0x00

Example WGL, illustrating a bus with a range specification: The bus
vector information is found in a different order than as specified in the Signal
block. Notice that for the bus addr, the begin_range values are 4, 0, and 5 and
the end_range values are 3, 2, and 7.

Start Example

signal
sig1 [sig1_1, sig1_2, sig1_3, sig1_4]: mux input;
addr[0..7] : input radix binary;

end

End Example

pattern group_ALL (sig1, addr[4..3], addr[0..2], addr[5..7])

Equivalent binary, illustrating a bus with a range specification:
signal_columns is set to twelve to indicate the total number of columns of
pattern bit information associated with all vectors in the pattern block. In
each case where the range is specified, the bus flag is set to 0x01.

Start Example

0x003B 0x000a 0x0009 “group_ALL” 0x000c 0x02 0x0004 “sig1” 0x00 0x02 0x0004
“addr” 0x01 0x0004 0x0003 0x02 0x0004 “addr” 0x01 0x0000 0x0002 0x02 0x0004

End Example

“addr” 0x01 0x0005 0x0007

Individual bus elements may be specified by setting both the begin_range
and the end_range to the bus element number.

End Pattern

The WGL Pattern block terminates with an end statement.

Getting Started, Vol. I, R8.1 6-119

Waveform Generation Language

byte_count line_type

Example WGL:

Start Example

End Example

end

Equivalent binary:

Start Example

End Example

0x0002 0x0002

Subroutine Header

A WGL Subroutine block begins with a subroutine header line that defines the
name of the subroutine. This name is referenced when the subroutine is
called.

byte_count line_type name

Example WGL:

Start Example

End Example

subroutine subr0()

Table 16. End Pattern Line Type

Item Type Description

line_type short 0x0002

Table 17. Subroutine Header Line Type

Item Type Description

line_type short 0x0001

name chars Characters in subroutine name

Waveform Generation Language

6-120 Getting Started, Vol. I, R8.1

Equivalent binary:

Start Example

End Example

0x0007 0x0001 "subr0"

End Subroutine

Subroutine blocks require an end statement.

byte_count line_type

Example WGL:

Start Example

End Example

end

Equivalent binary:

Start Example

End Example

0x0002 0x000e

NOTE
ASCII WGL has one end statement for both Subroutines and
Patterns blocks, while the binary form explicitly provides separate
statements for each.

Vector

Vector statements define the parallel, pattern vectors.

Table 18. End Subroutine Line Type

Item Type Description

line_type short 0x000e

Getting Started, Vol. I, R8.1 6-121

Waveform Generation Language

byte_count line_type tp_name_len tp_name map_key vectors

Map Key

A map key is referenced in all vector and scan lines, defining the mapping
between WGL pattern characters and their equivalent binary format. (See
Table 20 through Table 23.) Different map keys can be used for different
pattern lines within the same file. For example, use map key 3 (Table 23) for
all vector and scan pattern row lines and use map key 2 (Table 21) for all scan
state vector information.

Map key 0 uses three binary bits for every WGL character. It supports all the
state characters: 0, 1, Z, and X.

Map key 1 provides for representation of scan data although it is not restricted
to scan data. Mapping a WGL character into one bit of information provides

a. Defined by map_key (see “Map Key” below). 0s are used to pad the data until
the last byte is complete.

Table 19. Vector Line Type

Item Type Description

line_type short 0x0000

tp_name_len short Number of characters in TimePlate name

tp_name chars TimePlate name

map_key byte Selects the map key

vectors a Vector pattern data

Table 20. Map Key 0: Default General Mapping
(map_key = 0x00)

Character Bit Map

0 000

1 001

Z 010

X 011

- 111

Waveform Generation Language

6-122 Getting Started, Vol. I, R8.1

for more compact data files. This mapping is suggested for scan test cases that
do not contain Z or X data, only 0 and 1.

Map key 2 provides for representation of scan data that contains the pattern
character X in addition to 0 and 1. A WGL character is mapped into two bits of
information.

Map key 3 provides general mapping for test cases that do not contain Z data.
A WGL character is mapped into two bits of information

Table 21. Map Key 1: Intended for Scan Use
(map_key = 0x01)

Character Bit Map

0 0

1 1

Z Not used

X Not used

- Not used

Table 22. Map Key 2: Intended for Scan Use
(map_key = 0x02)

Character Bit Map

0 00

1 01

Z Not used

X 11

- Not used

Getting Started, Vol. I, R8.1 6-123

Waveform Generation Language

.

Example WGL:

Start Example

for the pattern header
pattern group_ALL (sig1, sig2, sig3, sig4)
this vector row would be encoded:

End Example

vector(tp1) := [0 1 1 0];

Equivalent binary with a map key of 0:

Start Example

0x000a 0x0000 0x0003 "tp1" 0x00 000 001 001 000 0000

End Example

^^^^ pad bits

Alternate equivalent binary with a map key of 1: A more compact vector
representation could have been done using a different map key.

Start Example

0x0009 0x0000 0x0003 “tp1” 0x01 0 1 1 0 0000

End Example

^^^^ pad bits

Table 23. Map Key 3: General Mapping
(map_key = 0x03)

Character Bit Map

0 00

1 01

Z Not used

X 10

- 11

Waveform Generation Language

6-124 Getting Started, Vol. I, R8.1

Loop

In ASCII WGL, the loop statement supports an optional loop name. In the
binary format, the optional loop name is not supported. The binary equivalent
of the loop count is expressed as a 32-bit, unsigned long allowing for the
maximum size of loop count.

byte_count line_type loop_count

Example WGL:

Start Example

End Example

Loop 5

Equivalent binary:

Start Example

End Example

0x0006 0x0003 0x00000005

End Loop

In ASCII WGL, the loop end statement supports an optional loop name. In
binary format, the optional loop name is not supported.

byte_count line_type

Table 24. Loop Line Type

Item Type Description

line_type short 0x0003

loop_count long Integer loop count

Table 25. End Loop Line Type

Item Type Description

line_type short 0x0004

Getting Started, Vol. I, R8.1 6-125

Waveform Generation Language

Example WGL:

Start Example

End Example

end

Equivalent binary:

Start Example

End Example

0x0002 0x0004

Subroutine Call

Subroutine calls are followed by the subroutine name.

byte_count line_type name

Example WGL:

Start Example

End Example

call subr0();

Equivalent binary:

Start Example

End Example

 0x0007 0x0005 "subr0"

Table 26. Subroutine Call Line Type

Item Type Description

line_type short 0x0005

name chars Subroutine name

Waveform Generation Language

6-126 Getting Started, Vol. I, R8.1

Repeat

Repeat is used with vectors, loops, or call constructs. Its primary use is on
vector lines. This command always indicates that the next command is to be
repeated the specified number of times. This line type is always followed by a
32-bit, unsigned integer.

byte_count line_type repeat_count

Example WGL:

Start Example

End Example

repeat 5

Equivalent binary:

Start Example

End Example

 0x0006 0x0009 0x00000005

Scan Parallel

Two binary line types are required to support a single scan vector as defined in
ASCII WGL. In the binary format, the scan parallel line defines the parallel
vector states of all the pins in the same format as the vector line. This line
does not contain any of the scan chain or scan state vector information. (See
“Scan Chain” on page 6-127 for state and chain information.)

Table 27. Repeat Line Type

Item Type Description

line_type short 0x0009

repeat_count long Number of times to repeat next statement.

Getting Started, Vol. I, R8.1 6-127

Waveform Generation Language

byte_count line_type tp_name_len tp_name map_key vector

Example WGL:

Start Example

End Example

scan(read) := [0 0 - -]

Equivalent binary:

Start Example

0x000b 0x0007 0x0004 "read" 0x00 000 000 111 111 0000

End Example

^^^^ pad bits

Scan Chain

In ASCII WGL, a scan vector references a scan run which consists of a scan
chain, the direction of the chain, and a state vector. In ASCII WGL, all state
vectors are defined within the ScanState block prior to the pattern block. In
addition, the scan state defines the values of all scan cells in the device in
ASCII WGL.

The binary format differs from the ASCII representation. In the binary
format, the scan chain and scan chain direction are still required. But instead
of referencing a specific state vector, the state vector data follow in-line. The

a. Defined by map_key (see “Map Key” on page 6-121). 0s are used to pad the
data until the last byte is complete.

Table 28. Scan Parallel Line Type

Item Type Description

line_type short 0x0007

tp_name_len short Number of characters in TimePlate

tp_name chars TimePlate group name

map_key byte Selects the map key

vector a Parallel vector data

Waveform Generation Language

6-128 Getting Started, Vol. I, R8.1

in-line scan state information represents only the data which is to be loaded or
observed by the specified scan chain.

The scan chain line must follow either a scan parallel line or another scan
chain line. The last_chain field identifies the end of the scan chain
information.

byte_count line_type last_chain chain_dir name_len
chain_name state_bits map_key scan_states

Example WGL: In the ASCII WGL file, ssi_1 refers to a scan state vector
containing 011100 as data bits for chain ch1 on input and sso_1 refers to a
state vector containing 011011 as data bits for chain ch1 on output. These
state vectors are previously defined within the ScanState block in the ASCII
WGL file.

a. Defined by map_key (see “Map Key” on page 6-121). 0s are used to pad the
data until the last byte is complete.

Table 29. Scan Chain Line Type

Item Type Description

line_type short 0x0008

last_chain byte 0x00 if another chain follows, 0x01 if last in
series

chain_dir byte Scan chain direction where:
0x00 = input chain,
0x01 = output chain,
0x0f = input/output (feedback) chain

name_len short Number of characters in chain name

chain_name chars Chain name

state_bits short Number of data bits in the scan state vector
for this chain. That is, the number of data bits
to be loaded or observed for this chain.

map_key byte Selects the map key

scan_states a Scan run pattern data

Getting Started, Vol. I, R8.1 6-129

Waveform Generation Language

Start Example

scan(read) := [0 0 - -] {this portion of the vector has already been specified
by the scan parallel binary equivalent }

input[ch1 : ssi_1],

End Example

output[ch1 : sso_1];

Equivalent binary: The output scan chain and its corresponding scan state
are translated into binary format using the map key 1 whereas the input
chain uses map key 2.

Start Example

0x000e 0x0008 0x00 0x00 0x0003 "ch1" 0x0006 0x02 00 01 01 01 00 00 00 00
 ^^ ^^ pad

0x000d 0x0008 0x01 0x01 0x0003 "ch1" 0x0006 0x01 0 1 1 0 1 1 00

End Example

^^ pad bits

See “Example 1” on page 6-131 for an example of scan chains of different
lengths.

Skip

The reserved word skip provides for the declaration of a time period when the
waveform state is unspecified. In the binary format, the time value, including
time units, is provided as a string.

byte_count line_type time_string

Table 30. Skip Line Type

Item Type Description

line_type short 0x0006

time_string chars Time value, including units, for skip duration

Waveform Generation Language

6-130 Getting Started, Vol. I, R8.1

Example WGL:

Start Example

End Example

skip 400ns;

Equivalent binary:

Start Example

End Example

0x0007 0x0006 “400ns”

Annotations

Annotations are attached to the previous line.

byte_count line_type annotation

Example WGL:

Start Example

End Example

{this is an annotation}

Equivalent binary:

Start Example

End Example

0x0017 0x000b "this is an annotation"

Table 31. Annotation Line Type

Item Type Description

line_type short 0x000b

annotation chars Annotation string

Getting Started, Vol. I, R8.1 6-131

Waveform Generation Language

End Binary

To terminate the binary section of the WGL file, use this command. The parser
then expects ASCII WGL to follow. No WGL equivalent exists for this
statement.

byte_count line_type

Binary format:

Start Example

End Example

0x0002 0x000f

Examples of ASCII and the Equivalent Binary
Two examples are provided to illustrate the use of binary pattern data. The
first example shows the handling of scan vectors, and the second example
shows subroutine call, loop, and skip statements. Within each example:

❏ The original WGL file is shown, followed by

❏ The WGL file without the pattern block but including a reference to the
separate binary file

❏ An ASCII version of what the binary portion of the file would look like

❏ Finally, the binary representation of the pattern block

Example 1

This example contains two scan chains of different lengths.

Table 32. End Binary Line Type

Item Type Description

line_type short 0x000f

Waveform Generation Language

6-132 Getting Started, Vol. I, R8.1

Example WGL file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;

end

scanCell
a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u; v; w; x;
a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1;

end

scanChain
ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p, q, r, s,

t, u, v, w, x, SC_OUT];
ch2 [SC_IN2, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1,

o1, SC_OUT2];
end

scanState
TDS_state0 := ch1(110011100001001000110100) ch2(110011100001001);
TDS_state1 := ch1(11X01X10000100X000110X00);
TDS_stateX := ;

end

timeplate tp1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];

Waveform Generation Language

6-133 Getting Started, Vol. I, R8.1

sig1 := input[0pS:S];
sig2 := input[0pS:D];
sig3 := output[0pS:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2,
SC_OUT2)

vector (0, 0pS, tp1) := [0 1 X Z - - - -];
scan(scanPlate) := [1 - - - - - - -],

input[ch1:TDS_state0], output[ch1:TDS_state1],
input[ch2:TDS_state0], output[ch2:TDS_stateX];

end

End Example

end

WGL file referencing binary pattern file: The above WGL file is changed
slightly to include a binarypattern file statement that references the binary
pattern file named wgl.bin. Notice that the ScanState and the Pattern blocks
are no longer included in the WGL file.

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;
SC_IN : input;
SC_OUT : output;
SC_IN2 : input;
SC_OUT2 : output;

end

scanCell
a; b; c; d; e; f; g; h; ii; j; k; l; m; n; oo; p; q; r; s; t; u; v; w; x;
a1; b1; c1; d1; e1; f1; g1; h1; i1; j1; k1; l1; m1; n1; o1;

end

scanChain
ch1 [SC_IN, a, b, c, d, e, f, g, h, ii, j, k, l, m, n, oo, p, q, r, s,

t, u, v, w, x, SC_OUT];
ch2 [SC_IN2, a1, b1, c1, d1, e1, f1, g1, h1, i1, j1, k1, l1, m1, n1,

o1, SC_OUT2];

Waveform Generation Language

6-134 Getting Started, Vol. I, R8.1

end

timeplate tp1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];
SC_IN, SC_IN2:= input[0pS:D];
SC_OUT, SC_OUT2 := output[0pS:X];

end

timeplate scanPlate period 500nS
SC_IN2, SC_IN := input[0pS:P, 100nS:S];
SC_OUT2, SC_OUT:= output[0pS:X, 300nS:Q, 400nS:X];
sig1 := input[0pS:S];
sig2 := input[0pS:D];
sig3 := output[0pS:X];

end

binarypattern file := wgl.bin;

End Example

end

ASCII representation of the binary pattern file wgl.bin: This section is
only an illustration of what the binary WGL looks like. It shows the unique
line types and their ordering. Scan information follows the scan row and
contains a direction, a chain name, and the state information. End statements
for the completion of the pattern section and the binary file are required.

Start Example

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3, SC_IN, SC_OUT, SC_IN2,
SC_OUT2)
vector(tp1) := [0 1 X Z - - - -];
scan(scanplate) := [1 - - - - - - -]
input[“ch1”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0],
output[“ch1”: 1 1 X 0 1 X 1 0 0 0 0 1 0 0 X 0 0 0 1 1 0 X 0 0],
input[“ch2”: 1 1 0 0 1 1 1 0 0 0 0 1 0 0 1],
output[“ch2”:X X X X X X X X X X X X X X X];
end { pattern }

End Example

end { binary }

Waveform Generation Language

6-135 Getting Started, Vol. I, R8.1

Binary representation: The following is the binary equivalent for the
pattern section shown above. For simplicity, signal names, TimePlate names,
and scan chain names are shown here as strings instead of in binary, and the
0x notation, indicating hexadecimal, is not included.

In this example, vector information for tp1 and scanPlate is specified using
map key 0. The input state vector information for ch1 and ch2 is specified
using map key 1. The output state vector information for ch1 and ch2 is
specified using map key 2.

Start Example

0006 00ff 0001 0000
0056 000a 0008 "pattern0" 0008 00 0004 "sig1" 00 01 0004 "sig1" 00 02 0004 "sig2" 00 02 0004 "sig3" 00
02 0005 “SC_IN” 00 02 0006 “SC_OUT” 00 02 0006 “SC_IN2” 00 02 0007 “SC_OUT2 00 ”
000b 0000 0003 "tp1" 00 05 af ff
0011 0007 0009 "scanPlate" 03 7f ff
000f 0008 0000 0003 “ch1” 00 18 01 ce 12 34
0012 0008 0001 0003 “ch1” 00 18 02 5c 74 01 0c 05 30
000e 0008 0000 0003 “ch2” 00 0f 01 ce 12
0010 0008 0101 0003 “ch2” 00 0f 02 ff ff ff fc
0002 0002

End Example

0002 000f

Example 2

This example has subroutine, loop, and skip statements, and an annotation.

Example WGL file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;

end

timeplate tp1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];

Waveform Generation Language

6-136 Getting Started, Vol. I, R8.1

sig3 := output[0ps:X, 75ns:Q, 95ns:X];
end

timeplate read1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:U];
sig3 := output[0ps:X];

end

timeplate write period 200ns
sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

pattern pattern0 (sig1:I, sig1:O, sig2, sig3)
vector (0, tp1) := [0 1 X Z];
vector (+, read1) := [1 1 - -]; {this is commentA}
loop 5
vector (+, write) := [X X X X];
vector (+, read1) := [1 0 X -];
{DXY test}
end
call sub0();

end

subroutine sub0()
skip 400ns;
vector (+, write) := [0 0 0 0];

end

End Example

end

Waveform Generation Language

6-137 Getting Started, Vol. I, R8.1

WGL file referencing binary pattern file:

Start Example

waveform patternload
pmode[dont_care];
signal

sig1 :bidir;
sig2 :input;
sig3 :output;

end

timeplate tp1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

timeplate read1 period 200ns
sig1 := bidir[0ps:D, 75ns:S, 95ns:D, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:U];
sig3 := output[0ps:X];

end

timeplate write period 200ns
sig1 := bidir[0ps:X, 75ns:Q, 95ns:X, 100ns:X, 120ns:Q, 175ns:X];
sig2 := input[0ps:S];
sig3 := output[0ps:X, 75ns:Q, 95ns:X];

end

binarypattern file:=wgl.bin;

End Example

end

ASCII representation of the binary pattern file wgl.bin: This section is
only an illustration of what the binary WGL looks like. It shows the unique
line types and their ordering.

Waveform Generation Language

6-138 Getting Started, Vol. I, R8.1

Start Example

{ Version "1.0" }
pattern pattern0 (sig1:I, sig1:O, sig2, sig3)
vector(tp1) := [0 1 X Z];
vector(read1) := [1 1 - -];
{ this is commentA }
loop 5
vector(write) := [X X X X];
vector(read1) := [- - - -];
{ DXY test }
end
call sub0()
end

subroutine sub0()
skip 400ns;
vector(write) := [0 0 0 0];
end

End Example

end

Binary representation: The following is the binary equivalent for the
pattern section shown above. For simplicity, signal names, TimePlate names,
and subroutine names are shown here as strings instead of in binary, and the
0x notation, indicating hexadecimal, is not included. The vector information is
specified using map key 0.

Waveform Generation Language

6-139 Getting Started, Vol. I, R8.1

Start Example

0006 00ff 0001 0000
002e 000a 0008 "pattern0" 0004 00 0004 "sig1" 00 01 0004 "sig1" 00 02
0004 "sig2" 00 02 0004 "sig3" 00
000a 0000 0003 "tp1" 00 05 a0
000b 0000 0005 “read1” 03 5f
0012 000b “this is commentA”
0006 0003 0000 0005
000b 0000 0005 “write” 02 ff
000b 0000 0005 “read1” 03 4b
000a 000b “DXY test”
0002 0004
0006 0005 “sub0”
0002 0002
0006 0001 “sub0”
0007 0006 “400ns”
000c 0000 0005 “write” 00 00 00
0002 000e

End Example

0002 000f

Waveform Generation Language

6-140 Getting Started, Vol. I, R8.1

Glossary of WGL Terminology
All user-defined identifiers, such as <TDSstate>, used in the WGL BNF
representation are found in this glossary. (A string is a sequence of characters
surrounded by double quotation marks. Embedded double quotation marks
and back slashes must be preceded by a back slash.)

any explanatory text

The text of a comment.

atepinName

An identifier or string previously declared as an ATE pin name in the Signals
block.

bitNumber

A number specifying a single bit of a multi-bit bus.

If you specify a range (<bitNumber> .. <bitNumber>), the first bitNumber
defines the most significant bit (MSB); the second bitNumber defines the least
significant bit (LSB). There is no restriction on which number is larger. (The
bits of the register may be labeled in increasing or decreasing order.)

cellName

An identifier or string naming a scan cell. Must be unique among all signals,
buses, groups, scan chains, scan registers, and other cells.

chainName

An identifier or string naming a scan chain. Must be unique among all signals,
buses, groups, scan cells, scan registers, and other scan chains.

cycleNumber

The numeric cycle number of a pattern vector.

edgeCount

A number indicating the number of edges associated with a timing generator.

Waveform Generation Language

6-141 Getting Started, Vol. I, R8.1

edgeNumber

The index of a particular edge of a timing generator.

end-of-line

The end of line indicator.

equationSheetName

An identifier or string naming an EquationSheet block.

exprSetName

An identifier or string naming an ExprSet sub-block.

fileName

The alphanumeric include file name. May be optionally enclosed in double
quotation marks (“ ”) or angle brackets (< >).

floatingPointValue

A number containing the digits 0 - 9 and one decimal point (.).

formatName

An identifier or string naming a tester-specific format. Must be unique among
all format names.

identifier

The alphanumeric name of a signal, bus, group, TimePlate, format, timegen,
pattern, subroutine, et cetera. Identifiers are made up of a sequence of
characters that does not include any of the following delimiters: # { } “ ” .. () +
, : ; [] or white space. Identifiers may not begin with a digit or exactly match
any reserved keyword. Names that violate these rules may generally be used
provided they are enclosed in double quotation marks and any embedded
double quotation mark or back slash characters are preceded with a back
slash.

integerValue

A number containing the digits 0 - 9.

Waveform Generation Language

6-142 Getting Started, Vol. I, R8.1

loopCount

A number specifying the iteration count of a pattern loop.

loopName

An identifier tagging a pattern loop begin and end statements. These are for
documentation purposes only.

macroBody

The text that makes up the body of a macro definition.

macroName

An identifier used in a macro definition or its invocation. (See the example on
page 6-100.)

macroParameter

An identifier used as a parameter in a macro definition.

MuxPartName

An identifier associating a particular ATE resource as a source for pattern
data to a multiplexed signal or bus. Within a Signals block, reference a
<MuxPartName> only once.

patternIdentifier

An identifier assigned to a particular pattern expression in a symbolic block
that may be used in pattern and subroutine blocks as an alias for that pattern
expression.

patternName

An identifier naming a pattern block that also may identify a tester-specific
pattern load (also called a burst). <patternName>s are saved in the database.

patternNameStr

An identifier naming a pattern block that also may identify a tester-specific
pattern load (also called a burst). String notation allows the use of characters
not otherwise permitted. <patternNameStr>s are saved in the database.

Waveform Generation Language

6-143 Getting Started, Vol. I, R8.1

pinElemName

A string identifying an ATE pin.

pinGrpName

A unique identifier for a group.

pinName

An identifier, string, or number identifying the name of a DUT or ATE pin.

pinNumber

An identifier, string, or number identifying the number of a DUT or ATE pin.

registerName

An identifier or string naming a tester-specific format register. Must be
unique among all register names.

repeatCount

A number specifying the number of times a pattern vector is to be repeated.

signalName

An identifier or string specifying the name of a signal, group, or bus.

stateName

An identifier or string naming a particular set of logic state values stored in
all scan cells. Must be unique among all other state names.

stateString

A sequence of pattern state characters or numbers appearing in a pattern row
interpreted according to the width, direction, and radix of the corresponding
pattern parameter.

subroutineName

An identifier naming a subroutine declaration or invocation.

timeGenName

An identifier or string naming a tester-specific timing generator.

Waveform Generation Language

6-144 Getting Started, Vol. I, R8.1

timeplateName

An identifier naming a TDS timing template. It is defined in a TimePlate
block that is referenced in a vector address in a pattern block. Must be unique
among all TimePlate names.

timeValue

A number, optionally including a decimal point, specifying a particular time.

TDSstate

A single character that can be any of D, U, N, Z, S, C, P, L, H, X, T, Q, R, 0, 1,
F, ?. Case is significant.

tsNumber

A numeric value used to identify individual timing sets.

validityClause

A signal name and state value as used in a Signal Definition file. (See the
“User-Defined Files” chapter, found in this guide, for the syntax requirements
of the Signal Definition file.) Use this clause within the strobe clause to specify
the direction of a signal based on another signal’s state value.

variableName

An identifier or string naming an equation variable.

vectorLabel

An identifier or string ...

waveFormName

An identifier or string naming the waveform program. This name is for
documentation purposes only. It is not stored in the WDB database.

