
RI Software:
The State-Based Approach

Philosophy Graphical
Programming

Optimization Test
Management

Workflow
Structure

 Cassini was designed from the ground up to have a more comprehensive interaction
of hardware and software. This is achieved by using a state-based approach in the
software, allowing measurement functions and commands to operate on the physical
resources within the tester at a hardware-state level. What this means for a user on Cassini
is that the programming interface and workflow reflect this state-based method when it
comes to developing measurement algorithms and building test plans. The following section
explains this software and programming approach, how it is used to build measurements,
create test plans, and control the execution flow.

What is the state-based approach?
 Programming languages can be classified and grouped
based on their abstraction level. The lowest level of
abstraction is machine language, combinations of binary 1’s
and 0’s that are driving control hardware at the transistor level.
All languages above machine language use syntaxes and
expressions to represent these groups of 1’s and 0’s in order to
be understood by a user and facilitate program design. These
commands are then translated back to hardware specific
binary commands by a compiler. The higher the abstraction
level, the simpler the user commands for complex tasks
become, making expansive and intensive computational tasks
manageable for a programmer. The tradeoff of higher level
languages is that compiled code loses efficiency when executed in the hardware. State-
based programming is an approach that offers both ease of use for programming and
higher code efficiency in hardware execution. This is accomplished by coupling the
software function’s execution to changes in hardware states. For example, to sweep the
frequency in a signal generator, the device transitions from one frequency to the next by
incrementally shifting the frequency “state” and holding all other hardware states constant.
A conventional programming approach requires that all of the hardware states be explicitly
defined in software either by the user or from a high-order command that contains several
procedures. This can lead to redundant and/or excessive code executed on the hardware to
control the signal generator. Using the state-based approach in Cassini, the software is
aware of the current hardware state, and the command to sweep frequency is simplified to
__
Roos Instruments: Fast Test by Design

Programming Abstraction Levels

High-Level Languages
 C++, Python

Middle-Level Languages
 C, Fortran

Low-Level Languages
 Assembly, Machine Code

RI Software

B 1-1

code that only manipulates the frequency states to accomplish the task. This not only
reduces the executed commands to the simplest form for the hardware, but provides a finer
degree of control that a user can exert in software.

Graphical Programming
 Regardless of the language or interface, every program needs a system of logical
organization and structure to make development easier. A typical program starts by linking
reference libraries that contain functions and macros a user’s program will access. Then
global default values and variables are defined that will be used to control and store data.
Finally, commands and functions are declared in the order they are to be executed. The
content of the RI software is no different, but this structure has been reengineered to fit within
the context of a graphical programming environment that provides some unique advantages.

 To make the interface more intuitive and help the
user take advantage of this type of control, the
programming interface was designed to mimic state-
based logic flow. Commands and functions are
represented as blocks in a schematic layout. These basic
building blocks, called test objects, encapsulate three
essential elements:

Data: information created or captured
Function: the action or task that acts on the data
Calls: requests generated by the software to utilize

resources in either hardware, software, or both

Operations on data are controlled by connecting these block’s input/output terminals to each
other to build algorithms or measurement functions. By visually connecting actions and
functions in this way, the user is provided with a more useful depiction of what the program is
doing and a more intuitive way to design and convey complex operations.

Dynamic Test Objects
 The object calls in each function block link to the hardware resources in Test
Instrument Modules connected to Cassini(see “Software Architecture” figure in Philosophy
document). A library of function blocks are dynamically assembled to reflect all of the
operational capabilities available to the user based on the TIMs attached to the system.
Building upon the software’s strong correlation to the hardware, the RI test plan software is
able to provide three classes of functions in the library that a user can employ to build
complex measurements:

__
Roos Instruments: Fast Test by Design

Data

Function

Calls

Test
Object

High-Order Functions
Pre-built, advanced

measurement operations:
Noise Figure, ACPR, PAR, IP3,

EVM, etc

Elemental operations
Collection of basic

arithmetic operations and
matrix manipulations

Control commands
Combination of data and
algorithmic flow control

and constraints

B 1-2

Context-Aware Functions
 Another distinction of the RI graphical programming environment is that blocks are
context-aware. When function or measurement blocks’ input/outputs are linked, the
software can identify intrinsic characteristics of upstream and downstream blocks in the
algorithm flow. This allows the test builder system to check continuity of variable type, data
conversion, and unit of measurement of interconnected blocks internally, enabling the user to
focus on measurement development.

Control Hierarchy
!

 The programming process has a tiered system of global, section, and panel windows
to help the user organize and maintain complex test plans and measurements. The “global”
tier is used to define values and control settings for multiple TIMs and measurements that will
the default if not declared in the lower tiers. The “section” tier enables the user to define
multiple settings, variables, and algorithms that will apply to related tests or test instruments.
The “panel” tier is used for implementing measurement algorithms, test commands and
declaring variables for an individual test. For example, say Cassini was configured with 2
signal generators(Source1, Source2), and two receivers(Receiver1, Receiver2). The user’s
test plan called for a measure of IP3 and IMD. That translates to a sweep of a source power
at a set frequency, a power measure at the receiver, and a frequency measurement using
two source tones at a set frequency and power. Test equipment defaults shared by both
tests would be placed in the Global: initial frequency and output power of each signal
generator(may be different for each) and the tuned frequency for both receive paths. In the
__
Roos Instruments: Fast Test by Design

Global

Section

Panel

Def_BDef_A Def_C
Def_CDef_B

Def_G
Def_G

Def_E
Def_A

Program Execution Flow

Def_D

Def_C Def_EDef_B Def_G
I n s t r u m e n t
default values
at runtime for
this panel’s test

Graphical function and
command test objects
are connected to form a
series of measurements
or operations

The user can set a default
va lue for a l l tests or
instruments by declaring it
in the Global. Throughout
the test program, the user
can change that default
setting by declaring it within
a test Section or Panel to
suit a specific application.

B 1-3

“section” tier, each measurement has separate power and frequency limits/constraints that
are specific to each test’s source and receive paths. In the “panel” tier, measurement blocks
and defaults are configured to execute the individual IP3 or IMD tests, capture data, and
display the results to the user. This resource organization structure gives the user the
flexibility to exert control over several instruments simultaneously or individual instruments
separately to suit the needs of their application.

Test Plan Simulator
 The entire RI software platform was built using the smalltalk language and OS/2
operating system to minimize the delays and latencies related to a large operating system in
favor of a more streamlined software platform. Consequently, the system’s small footprint
lent itself to porting easily into a virtual environment on any user's native operating system.
This allows RI to provide a simulator of the test system where a test plan developer can
design, test, and debug their test plans on their local computer. With this debug
development step in place, the user can verify their setup with an emulated TIM
configuration before running it on the actual hardware to make use of limited time on the
tester to take measurements and verify results.

Up Next
 The next document in the series, "Optimization," discusses Cassini's unique automated
test plan optimizer: RI Synapse. By using the architectural advantages of state-based
programming, Synapse provides highly efficient test plan execution in hardware,
dramatically reducing test time without adding to the user's design cycle.

__
Roos Instruments: Fast Test by Design B 1-4

