
June 1999 Version 6.4 5–1

Main Menu

5 HSD Pattern Tools

When you save a pattern in the Digital Pattern Editor or Digital Pattern
Debugger, the pattern in the display region is stored as a pattern file on disk.
The pattern file has a .pat filename extension and the information in this file
is in a binary code, known as “A500 pattern format.”

To make the binary information in a pattern file available in ASCII format,
IMAGE includes a set of digital pattern tools for translating a binary pattern
file into an ASCII IMAGE Pattern Language (IPL) file and back again.
Because IPL files are text files, the pattern information in these files can be
readily exchanged with CAD tools or pattern files from other testers.

The IMAGE digital pattern toolset includes:

• An IMAGE Pattern Compiler (ipc) for translating IPL text files into
binary pattern files (see page 5–17)

• An IMAGE Pattern Reverse Compiler (iprc_hsd50) for translating binary
pattern files into IPL text files (see page 5–19)

• An IMAGE Pattern Beautifier (ipb) for making the contents of IPL text
files more readable. It also prepares them for printing (see page 5–21).

5.1 IMAGE Pattern
Language

An IPL file can include:

• A pinmap_filename statement
• Preprocessor statements
• External labels
• A waveforms statement
• vector statements
• An output_filename statement
• Comments

All IPL statements are in free format.

5.1.1 Pin Maps A pinmap allows you to use pin numbers and pin names in IPL statements.
Without a pinmap, you can only specify tester channels. Pinmaps must be in
the correct form for Advanced Mixed-Signal (AMS) testers. (See “Pinmap Lan-
guage” on page 4–6 in part I of the Advanced Mixed-Signal Test Head Manual
for a description of the syntax.) Pinmaps must be specified in a separate file (if
used) and passed to the IMAGE Pattern Compiler (ipc) using the following
command (see “IMAGE Pattern Compiler” on page 5–17):

ipc -map <pinmapfile>

For example, the following is a valid pinmap file:

AMS

June 1999 Version 6.4 5–2

HSD Pattern Tools IMAGE Pattern Language

Main Menu

pinmap = {
1 "out_strobe" dib:2 hsd50_drv:2,
2 dib:5 hsd50_drv_rcv:5,
3 dib:7 hsd50_drv_rcv:7,
4 dib:9 hsd50_drv_rcv:9,
5 dib:11 hsd50_drv_rcv:11,
};

You can also specify a pinmap file by adding a pinmap_filename statement to
your IPL file. The syntax is:

pinmap_filename="<filename>";

This has the same effect as using the -map <filename> switch to ipc. This
statement, if used, must precede the waveforms and vector statements. If both
-map and the pinmap_filename statement are used, only the pinmap file
specified by -map is read.

5.1.2 DIBView Schematics DIBView schematics are like pinmaps. They allow you to use pin numbers and
pin names in IPL statements. However, the pin numbers and names are speci-
fied in a DIBView schematic or .exp file (see “DIBView” on page 7–1 in the
IMAGE Base Language Manual). DIBView schematics must be specified in a
separate file and passed to the IMAGE Pattern Compiler (ipc) using the fol-
lowing command (see “IMAGE Pattern Compiler” on page 5–17):

ipc -map <dibview filename>.exp <pattern filename>.tp

5.1.3 Preprocessor
Statements

The IMAGE Pattern Language supports C preprocessor statements such as
#define and #undef for defining and undefining macros; #include for
including definitions from another file; and #if, #ifdef, #ifndef, #else, and
#endif for conditional compiling. The IMAGE Pattern Compiler passes all IPL
source files through the C preprocessor (cpp) before compiling them. The fol-
lowing symbols are used in the descriptions of IPL syntax:

| A vertical line represents or; you can choose one of
the items separated by the vertical line.

[] Square brackets indicate the enclosed expression is
optional.

... The preceding is repeated any number of times.

#...# Any integer in the specified range (inclusive) can be
used.

Pinmap files cannot be included with the #include. Pinmap files must be
specified on the ipc command line with the -map <pinmapfile> switch or in
the pattern source file using the pinmap_filename statement. Letters and
names specified in upper case may be in either lower or upper case.

5.1.4 External Labels Declaring external labels provides a way to refer to labels in another pattern.
The HSD has two types of external pattern labels:

• Normal external labels
• PRAM-only external labels

The declaration type for normal external labels is extern_label. For exam-
ple:

extern_label start2; /* a label identifying the starting
location in another pattern file */

June 1999 Version 6.4 5–3

HSD Pattern Tools IMAGE Pattern Language

Main Menu

extern_label subr2; /* a label for a subroutine in
another pattern file */

The declaration type for PRAM-only external labels is extern_pram_label.
The PRAM-only external label is used when referencing labels in routines com-
piled with the -pram_only switch (see “IMAGE Pattern Compiler” on page
5–17). This switch allows you to minimize PRAM usage by allowing CALL’s to
subroutines declared in this pattern to be placed in SAM. Patterns compiled
with the -pram_only switch can only reference labels declared -pram_only. At
compile time, the IMAGE compiler, ipc, checks for extern_pram_label if the
compile -pram_only command is used. The compiler causes a run-time error
if other labels are found.

Note -pram_only generally works best for small pattern subroutines
that are called many times. It is not recommended for use under any
other conditions.

For example:

extern_pram_label XXX;
extern_label YYY;
<many vectors> /* may be in SAM */
CALL XXX; /* may be in SAM */
<many other vectors> /* the 1st 32 vectors here might be

in SAM */
CALL YYY;

<many other vectors> /* the 1st 32 vectors here MUST be
in PRAM */

In this example, ipc knows that XXX is a PRAM-only label and YYY is not
PRAM-only. Without a PRAM-only option, each CALL to a subroutine requires
that the 32 vectors following the CALL opcode be placed in PRAM memory.
However, if the CALL is to a PRAM-only subroutine, this restriction does not
apply and the 32 vectors following the CALL to XXX might be placed in SAM.
Other factors can cause some or all of the 32 vectors to be placed in PRAM
whether XXX is PRAM-only or not. These factors are:

• Use of any opcode other than CALL, REPEAT, or END_ARG
• Use of W, I, R, or C in a vector
• A call to a subroutine which is not PRAM-only
• Use of any extended microcode instructions

If there are enough calls to XXX, the cost of forcing XXX to be in PRAM may be
more than offset by the gain of putting the 32 vectors after each call to XXX into
SAM instead of PRAM. Again, other factors may cause one or more these vec-
tors to be in PRAM, so the gain is not automatic.

Calling a subroutine which is not PRAM-only requires that the next 32 vectors
in the calling pattern be placed in PRAM because 32 vectors are needed to reset
the SAM address counter. Since a normal subroutine may cause execution of
both PRAM and SAM vectors before the RETURN occurs, the SAM address
counter may have changed. So the 32 vectors following the CALLmust be placed
in PRAM. This allows the SAM address counter to be reset while they execute.

But if the SAM address counter can be guaranteed not to have changed since
only PRAM vectors have been executed during the call to XXX, this restriction

June 1999 Version 6.4 5–4

HSD Pattern Tools IMAGE Pattern Language

Main Menu

does not apply and the vectors following the call may be placed in SAM if there
is no other reason for them to be put in PRAM. If the subroutine is small and
called often, this is likely to result in less PRAM usage overall.

External labels must be declared in a pattern before they can be used as refer-
ences and must precede vector statements.

5.1.5 The waveforms
Statement

If capture and source microcode commands are to be included in an IPL file, you
must declare the source and capture memories for the commands. Use the
waveforms statement to do this. The waveforms statement must appear
before the first vector statement and has the following syntax:

waveforms={<pin specification> <instrument type>,...};

Where:

<pin specification> Is
<pin name>
<pin number>
slot:<slot_number>
inst:<instrument_number>

<pin name> Is the name of a pin specified in the pinmap. The pin
must have a pin number in the pinmap if this form
is used. If dib was used in the pinmap rather than a
pin number (because the instrument is connected to
DIB circuitry), then the slot or inst pin specifica-
tions must be used rather than a pin name.

<pin number> Is the number of a pin specified in the pinmap.

<slot number> Is the test head slot number of an analog waveform
instrument. Slot numbers are not always portable to
test systems with different configuration boards and
should be used only when absolutely necessary (for
example, while developing a test plan) and converted
to pin names or pin numbers as soon as possible.

<instrument_number> Is the occurrence of a digital instrument in the test
head. If there is only one of the instrument, this
number is always 1.

<instrument type> Is one of the following:

dig_cap Digital Capture Instrument
dig_src Digital Source Instrument
hfdig High Frequency Digitizer
plfsrc Precision Low Frequency AC Source
plfdig Precision Low Frequency AC Digitizer
rt_histo Real Time Histogram Module
vhfawg VHF Arbitrary Waveform Generator

Example:

waveforms = {
LD plfdig, /* pin name */
1 hfdig, /* pin number */
slot:4 plfsrc, /* analog */
inst:1 dig_src, /* digital */

}

June 1999 Version 6.4 5–5

HSD Pattern Tools IMAGE Pattern Language

Main Menu

5.1.6 The vector Statement Vector statements form the body of an IPL file. They begin with the keyword
vector followed by a pin list and the vector data for the pins. Up to one million
vectors can be specified in a single vector statement, and more than one vector
statement can appear in an IPL file. (You should avoid large vector statements
since large files compile slowly and are hard to debug. Breaking the large files
into smaller files reduces the time needed to compile and debug.)

Like all IPL statements, vector statements have free format. The syntax for
a vector statement is:

<vector statement>::= vector(<pin list>){<vector data>}

Pin List A pin list assigns pins or channels to the vector data that follows the pin list. If
the IPL file includes a pinmap, you can specify the pins as pin numbers or pin
names. Or you can specify channel numbers.

You can group pins within a pin list by enclosing them within parentheses. Use
a pingroup to pack together a number of pins, allowing the channel data to be
specified for all of the pins within the pingroup. All pingroups in a pinlist must
be separated by commas. Also individual items within a pingroup must be sep-
arated by commas.

Each pin or pingroup has a radix associated with it. You can assign a radix to
each pin or pingroup in the pin list. When a radix is specified, the vector data
for the pin or pingroup must assume this radix unless the pin list radix is over-
written by a local radix.

You can specify a mode for each group of pins. Legal modes are D_D (dual-
drive), IO_M (io_midband), IO_V (io_valid) and HIZ. A mode indicates that the
vector data for that pingroup is interpreted in a special way. The D_D, IO_M,
and IO_V modes must have two data fields for each pingroup instead of the
usual single data field.

If an IPL file contains more than one vector statement, all pins or pingroups
specified in subsequent vector statements must be included in the first vector
statement. The pins need not be in the same order. If you specify a mode for a
pingroup, that pingroup cannot change modes between vector statements. Mul-
tiple vector statements are useful for specifying a pin or pingroup once (a clock,
for instance) and then not repeating the data on subsequent vectors. Pins not
specified in subsequent pin lists are set to “run time repeat” except for pins
used with modes. Pins used with modes have special defaults for Dual_Drive,
IO_Valid, IO_Midband, and HiZ as shown in table 5–1.

A <pin list> is defined as:

<pinlist>::= <pingroup>[:<modifier>][,] ...

Where:

Table 5–1 Default Data for Unspecified Pins in Subsequent Pin Lists

Mode Default Data for Unspecified Pins in
Subsequent Pin Lists

D_D 0 0

IO_V 0 X

IO_M 0 X

HIZ 0

June 1999 Version 6.4 5–6

HSD Pattern Tools IMAGE Pattern Language

Main Menu

<pingroup>::= <field_name>
<pin_name>
<pin_number>
<pin_number> TO <pin_number>
CHAN:<digital_channel>
CHAN:<digital_channel> TO

CHAN:<digital_channel>
<field_group>
.ISDN_DRV CHAN:<digital_channel>
.ISDN_RCV CHAN:<digital_channel>

<field_group>::= (<pin_name>,
<pin_number>,
<pin_number> TO <pin_number>,
CHAN:<digital_channel>,
CHAN:<digital_channel> TO
CHAN:<digital_channel>, ...)

<modifier>::= <radix> [:<mode>]
<mode> [:<radix>]

Where:

<pingroup> Is any combination of pin names, pin numbers, or
digital channel numbers separated by commas and
enclosed in parentheses. For example:

(clk, 6 to 9, CHAN:15 to CHAN:20)

<field_name> Is a field name defined in a pinmap.

<pin_name> Is a pin name defined in a pinmap. The pin must
have a pin number in the pinmap if this form is used.
If dib was used in the pinmap rather than a pin
number (because the channel is connected to DIB
circuitry), then the CHAN:<n> specification must be
used instead of a pin name.

<pin_number> Is a pin number defined in a pinmap, between 1 and
192.

<digital_channel> Is the number for a digital channel. The number is
between 1 and 192.

<field_group> Is used to pack together several single pins. You can
specify the data for all the pins at one time.

<modifier> A modifier cannot be used with ISDN pins. If you use
<pin_number> TO <pin_number> or
CHAN:<digital_channel> TO
CHAN:<digital_channel>,you must put either
form in parenthesis before using a modifier.

<radix> Is X, H, Q, O, D, B, or S

X or H is hexadecimal
Q or O is octal
D is decimal
B is binary
S is symbolic
(Default is symbolic.)

<mode> Is D_D, IO_V, IO_M, or HIZ, where

June 1999 Version 6.4 5–7

HSD Pattern Tools IMAGE Pattern Language

Main Menu

D_D is dual-drive mode. Two drive data fields per
pingroup per vector.

IO_V is io_valid mode. One drive and one expect
data field per pingroup per vector.

IO_M is io_midband mode. One drive and one expect
data field per pingroup per vector.

HIZ is high impedance mode. One drive data field
per pingroup per vector.

Example:

vector ((1 to 3, 8, 9), 13, CHAN:9 to CHAN:5, input:D_D,
(20 to 35):IO_M:H) { ...};

In this example, (1 to 3, 8, 9) is a pingroup. The numbers in this pingroup
refer to pin numbers in a pinmap. Following the pingroup is the number 13,
which refers to pin thirteen in a pinmap. CHAN:9 to CHAN:5 refers to digital
channels five to nine in reverse order. input is the name of a pin defined in a
pinmap. input is a dual_drive pin. (20 to 35) is another pingroup, referring
to pins twenty to thirty-five in a pinmap. Pins twenty to thirty-five are
io_midband mode and the vector data for this last pingroup must be specified
in hexadecimal (:H).

Vector Data Vector data specifies the pattern microcode and channel data associated with
each pin or pingroup specified in a pin list. The format for the vector data is
modeled after the Digital Pattern Editor format (“Creating a New Pattern” on
page 3–25). As in the Digital Pattern Editor display, each vector data line rep-
resents a single vector in a digital pattern, and the vector data itself is grouped
into columns as shown in figure 5–1. The information in these columns should
be sufficient to reproduce the columns in the Digital Pattern Editor display.

Figure 5–1 Layout of Vector Data

All vector data for a pin list is enclosed within curly braces {}. Each line of vec-
tor data is terminated with a semicolon, which is interpreted by the pattern
compiler as a boundary between two vectors. Vectors are further divided into
the following fields (from left to right):

• Vector number field

0 GLOBAL p1: TSET 1 H1X01 .r0 .d1E00 .d0 .d0001 ;
1 L0X-1 .r0 .d1E01 .d0 .d0001 ;
2 SET_LOOP 10 L1X-1 .r0 .d1E02 .d0 .d0001 ;
3 loop1: L0X-1 .r0 .d1E03 .d0 .d0001 ;
4 REPEAT 35 L1X-1 .r0 .d1E04 .d0 .d0001 ;
5 END_LOOP loop1 H0X-1 .r0 .d1E05 .d0 .d0001 ;
6 CALL subr 1 L1X-1 .r0 .d1E06 .d0 .d0001 ;
7 PLFDIG = (output) TRIG L0X-1 .r0 .d1E07 .d0 .d0001 ;
8 IF (PASS) CALL subr2 L1X-1 .r0 .d1E08 .d0 .d0001 ;

VECTOR
NUMBERS LABELS

VECTOR
PATTERN MICROCODE CHANNEL DATA

{

}

June 1999 Version 6.4 5–8

HSD Pattern Tools IMAGE Pattern Language

Main Menu

• Vector label field
• Pattern microcode field
• Channel data fields

The fields correspond to cells in the Digital Pattern Editor. All fields are
optional except for the channel data fields.

The fields themselves are grouped into columns, which correspond to the col-
umns in the Digital Pattern Editor. Although the IMAGE Pattern Language
imposes no restrictions on the format of the vector data, you should lay out the
vector data in columns as shown in figure 5–1. (You can also have the IMAGE
Pattern Beautifier do this for you “IMAGE Pattern Beautifier” on page 5–21.)

Vector Number Field The syntax for a vector number is:

<vector_number>::=[+]<offset>[:<radix>]

Where:

<offset> Is an absolute vector offset from the beginning of the
pattern. The first vector is always zero. The offset
must be greater than the offset of the last defined
vector and less than the maximum pattern size.
Therefore, an offset of seven implies that this vec-
tor is the eighth vector from the beginning of the pat-
tern. The offsets must always be increasing in size
and less than the maximum pattern size.

Offsets need not be consecutive. One vector, for
instance, can have an offset of 8 and the next vector
an offset of 20. The pattern compiler assumes miss-
ing vectors are “runtime repeat” vectors unless the
vectors have pingroups whose modes are specified.
Defaults for pingroup modes are listed in table 5–2.

[+]<offset> A plus sign before the offset changes the offset into a
relative offset; that is, an offset relative to the cur-
rent vector count. For example, +3 repeats the cur-
rent vector three times.

[:<radix>] If a radix is specified, that radix stays in effect until
another radix is specified. (Default is decimal.)

Vector Label Field The syntax for a vector label is:

<vector_label>::=[GLOBAL] <label>:

Where:

Table 5–2 Pingroup Mode Defaults

Mode Default state

D_D 0 0 (drive low - drive low)

IO_V 0 X (drive low - mask)

IO_M 0 X (drive low - mask)

HIZ 0 (drive low)

June 1999 Version 6.4 5–9

HSD Pattern Tools IMAGE Pattern Language

Main Menu

GLOBAL Is a keyword for making this label a global label.
(Global labels are explained in “Pattern Microcode”
on page 2–36.)

<label> Must be a legal C identifier; that is, an alphanumeric
string with the first character being an alphabetical
character. Underscores are accepted as alphabetical
characters.

Pattern Microcode Field A pattern microcode field has three optional commands that must appear in
the order shown:

<MICROCODE COMMAND> <SOURCE/CAPTURE COMMAND> <TSET COMMAND>

The four types of MICROCODE COMMANDS are:

• Unconditional commands
• Conditional commands
• Conditional statements
• Other commands

(Microcode commands are covered in detail in “Pattern Microcode” on page
2–36)

Unconditional commands include:

SET_LOOP <1..65536> Push number onto loop stack. SET_LOOP 1 executes
vectors in loop once.

SET_LOOP1 <1..65536>Set loop counter 1 to number. No loop stack for loop
counter 1.

SET_LOOP2 <1..65536>Set loop counter 2 to number. No loop stack for loop
counter 2.

LOOP <1..65536> Similar to SET_LOOP, but pushes number onto the
stack the first time only, not each time the loop exe-
cutes.

LOOP1 <label> Similar to SET_LOOP1, but sets loop counter 1 the
first time only, not each time the loop executes.

LOOP2 <label> Similar to SET_LOOP2, but sets loop counter 2 the
first time only, not each time the loop executes.

Note LOOP, LOOP1, and LOOP2 instructions work as described above only
if the LOOP, LOOP1, or LOOP2 instruction is at a label, and the cor-
responding END_LOOP references that label. See “LOOP, LOOP1,
and LOOP2” on page 2–41.

END_LOOP <label> Decrement loop counter. If not zero go to <label>,
otherwise pop loop stack.

END_LOOP1 <label> Decrement loop counter 1. If not zero go to <label>,
otherwise continue.

END_LOOP2 <label> Decrement loop counter 2. If not zero go to <label>,
otherwise continue.

REPEAT <2..32768> Repeat channel data <2..32768> times before con-
tinuing.

June 1999 Version 6.4 5–10

HSD Pattern Tools IMAGE Pattern Language

Main Menu

POP_LOOP Pop the loop stack.

PUSH <label> Push address of <label> onto subroutine stack.

HALT Halt pattern.

READCODE <0..2047> Set read code to <0..2047>.

CLR_CODE Clear the read code.

SET_GLO <label> Put address of <label> in global address register.

MATCH <label> If fail and not end of loop go to <label>, otherwise
continue.

ENABLE <[AND | OR] ([!] <flag>)>
Set up conditions to be evaluated by a later IF
<flag> statement. The flag can be:
PASS | FAIL | EXT | SCF | CPU | NONE.
NONE means FLAG always evaluates false (no condi-
tional action occurs).

Note AND and OR are legal only when used with ENABLE command. The
AND or OR is required if more than one condition is specified.

CLR_FLAG (<flag>...)Clear the specified condition flags if they were previ-
ously enabled.

POP Pop the subroutine stack.

KEEP_ALIVE Activate keep-alive RAM.

SET_SCF Set the SCF flag on the other SCM.

Conditional commands include:

JUMP <label> Go to <label>.

CALL <label> Execute subroutine at <label>.

RETURN Return from subroutine.

END_ARG End an argument list in a subroutine.

EXE_GLO Push address of next vector onto stack, then jump to
address in global address register.

JMP_GLO Start execution at address in global register.

EXIT_LOOP <LABEL> Pop loop stack, go to <label>.

A conditional statement has the form:

IF (FLAG) <conditional command> [CLR_COND]

The condition flags are:

FLAG Evaluate conditions programmed by previous
ENABLE statement.

PASS Inverse of FAIL flag.

NONE Clear any ENABLE’d conditions.

FAIL Becomes true when a failure on any channel gets
back to the SCM. Remains true until cleared by the
pattern.

June 1999 Version 6.4 5–11

HSD Pattern Tools IMAGE Pattern Language

Main Menu

EXT Vector bus or formatter condition true.

SCF Dual SCM flag true.

CPU CPU flag is true. (This flag is set when a resume
hsd50 pattern statement is executed in a test pro-
gram.)

!EXT Vector bus or formatter condition false.

!SCF Dual SCM flag false.

!CPU CPU flag is false.

Other commands include:

NO_HALT Do not stop the pattern if a failure occurs on this vec-
tor.

ICYC Inhibit cycle counter.

RESYNC Synchronizes T0 clock with AC cage clocks. RESYNC,
A0_INC, and A0_DEC are mutually exclusive.

MASK Mask failures on this vector

CLR_FAIL Clear the formatter accumulated fail information.

QUAL Causes the specified vector to be captured in HRAM
when hram_mode:vectors is specified.

A0_INC Increments A0 divider. RESYNC, A0_INC, and
A0_DEC are mutually exclusive.

A0_DEC Decrements the A0 divider. RESYNC, A0_INC, and
A0_DEC are mutually exclusive.

CLR_COND Clears the condition flags used to make conditional
branches in the pattern. Only flags currently
enabled are cleared, and they are cleared only if a
branch occurs. This instruction must be used with a
conditional command.

A SOURCE/CAPTURE COMMAND can either be a source instrument command or
a capture instrument command. Source instrument commands come in two
forms:

<dig_src keyword> = (<analog spec.>) [<dig_src control>] [VBC_STR]
<dig_src keyword> = (<digital spec.>) [<dig_src control>] [SEND | SEND10 |

SHIFT] [VBC_STR]

Capture instrument commands also come in three forms:

<c_mem keyword> = (<analog spec.>)[TRIG][VBC_STR]
<c_mem keyword> = (<digital spec.>)[TRIG][STORE][SHIFT][VBC_STR][RESYNC]
RT_HISTO = (<digital spec.>)[TRIG][STORE][SHIFT][VBC_STR] [DECR]

Where:

<dig_src keyword> Is one of the following:

DIG_SRC Digital Source instrument.

PLFSRC Precision Low Frequency AC Source.

VHFAWG VHF Arbitrary Waveform Generator.

June 1999 Version 6.4 5–12

HSD Pattern Tools IMAGE Pattern Language

Main Menu

<analog spec.> Is the name or number of an analog pin defined in
your pinmap, or it is

SLOT:<slot number>

where slot number is the number of the slot in the
advanced mixed-signal test head where the desired
instrument is located. This form is not portable to
test systems with differing configuration boards and
channel card populations and should not be used
unless necessary.

<digital spec.> Is the name or number of a digital pin defined in
your pinmap or it is:

INST:<instrument number>

where instrument number is between 1 and N. N is
the number of instruments in the test system.

<dig_src control> Is one of the following:

RESYNC Resynchronize clocks on the VHFAWG. This command
can be used on the VHFAWG only.

START Start sourcing immediately and loop continuously.
Can not be used with the VHFAWG.

STARTE Start sourcing at the end of the current waveform
and loop continuously.

START1 Start sourcing immediately. Source the data once
and then stop. Cannot be used with VHFAWG.

STARTE1 Start sourcing at the end of the current waveform.
Source the data once and then stop. Cannot be used
with VHFAWG.

NEXT Start sourcing the next waveform after the current
waveform is done. Then loop continuously.

NEXT1 Start sourcing the next waveform after the current
waveform is done. Source the data once and then
stop. Can not be used with the VHFAWG.

STOP Stop sourcing immediately. Can not be used with the
VHFAWG.

STOPE Stop sourcing at the end of the current waveform.

<c_mem keyword> Is one of the following:

DIG_CAP Digital Capture Instrument

HFDIG High Frequency AC Digitizer

PLFDIG Precision Low Frequency AC Digitizer

A TSET COMMAND defines the timing set for the channel data. Its syntax is:

TSET <1..1023>

Channel Data Field Each vector has channel data associated with it. Like the vector itself, the
channel data for each vector is divided into fields, which are organized into col-
umns. Each channel field corresponds to a pin or pingroup in the pin list. The

June 1999 Version 6.4 5–13

HSD Pattern Tools IMAGE Pattern Language

Main Menu

pin list determines the number of channels for the channel data and the num-
ber, order, and radix of each channel field.

The number of channels in a channel field is determined by the number of pins
in the pingroup, and the radix of a channel field is determined by the radix of
the pingroup. Any single pins in a pin list have channel fields consisting of a
single channel.

The syntax for the channel fields depends on their radix. The syntax is:

<field data> = <pin_value>[<pin_value>...]
| <numeric_value>[:<radix>]
| <symbolic_value>
| <isdn_data>

Where:

pin_value Is - | 0 | 1 | L | M | H | V | X | W | I | R | C

numeric_value Is .D<number> | .R<number>

.D<number> Indicates that the channels are to be driven with the
specified <number>.

.R<number> Indicates that channels are to receive data which are
to be compared against the following <number>.

number Represents the drive or receive states for the chan-
nels. How they are defined depends on which
numeric radix is specified. For example, in binary
the <channel states> for a field of eight drive
channels might be defined as .d10011111. In hex
they would be defined as .d9F and in octal they
would be defined as .d237.

symbolic_value Is: 0 Drive low
.1 Drive high
.L Expect low
.M Expect midband
.H Expect high
.V Expect valid
.W Waveform drive. Data comes from

waveform memory
.I Waveform drive inverted
.R Waveform receive
.C Waveform receive inverted
.X Tri-state
.- No change

isdn_data Is <isdn_drv_dat> | <isdn_rcv_dat>

Note isdn_data is legal only for pins declared .ISDN_DRV or
.ISDN_RCV in the pinlist.

isdn_drv_dat Is:
W | X | - | HOLD | 1 | 0 | 0H | 0L | E | B | 1_VIOL
| 0_VIOL | 0H_VIOL | 0L_VIOL | E_VIOL |
B_VIOL | 1_BT | 0_BT | 0H_BT | 0L_BT | E_BT |
B_BT | 1_BTV | 0_BTV | 0H_BTV | 0L_BTV | E_BTV
| B_BTV

June 1999 Version 6.4 5–14

HSD Pattern Tools IMAGE Pattern Language

Main Menu

isdn_rcv_data Is:
HOLD | X | - | H | L | LH | LL | M | V | B | H_VIOL
| L_VIOL | LH_VIOL | LL_VIOL | M_VIOL |
V_VIOL | B_VIOL | H_LE | L_LE | LH_LE | LL_LE
| M_LE | V_LE | B_LE | H_VE | L_VE | LH_VE |
LL_VE | M_VE | V_VE | B_VE | H_CF | L_CF |
LH_CF | LL_CF | M_CF | V_CF | B_CF

A hyphen (-) is used to repeat symbolic channel data. The hyphen means “no
change,” which repeats the channel data from the previous vector. For numeric
channel data, a period-hyphen (.-) represents no change. Also, a period before
a single symbolic digit assigns that symbolic digit to all channels in a pingroup.

For example, H1X-1 is a symbolic channel field represents its channel data as
a series of symbolic digits, one for each channel.

5.1.7 The output_filename
Statement

By default, the pattern compiler gives its output file the same root name as its
source file but appends onto it a .pat extension. For example, if the IPL source
file is named bonzo.tp, the compiler’s output file is automatically named
bonzo.pat.

You can override this default action by adding an output_filename state-
ment to your IPL file. Its syntax is:

output_filename="<filename>";

When the pattern compiler detects an output_filename statement, it uses
the filename supplied in the statement for the name of its output file. Specify-
ing the name of the output file is useful for conditional compiles where several
pattern files are produced from one IPL source file. This statement, if used,
must precede the first vector statement in an IPL file.

5.1.8 Comments Use the normal C syntax (/* */) to include comments in an IPL file. The pat-
tern compiler preserves these comments in its output file, so that they appear
again in a pattern editor or pattern debugger display unless the -nocomment
switch is used with the ipc command (see “IMAGE Pattern Compiler” on page
5–17). However, it does not preserve two types of comments. Any comment
starting with either /*@ or /*@@ is discarded by the compiler. These comments
never appear in a pattern editor or pattern debugger display. For example:

/* This comment appears in the pattern editor. */
/*@ This comment does not appear in the pattern editor.*/

Like the pattern compiler, the pattern beautifier preserves all comments spec-
ified in normal C syntax (/* */). It also preserves all comments that start with
/*@. But it discards all comments that start with /*@@.

The pattern compiler associates any comments it finds with the vector cur-
rently being compiled. For instance, if it finds a comment at the end of a vector
line, it associates it with that vector. If it finds a comment between two vector
lines, it associates it with the second vector. If one vector has multiple com-
ments, the comments are grouped together as a single comment in an output
pattern file.

5.1.9 IPL Reserved Words IMAGE Pattern Language (IPL) has a separate set of reserved words that is
different from IMAGE Test Language (ITL). One key difference between IPL
reserved words and ITL reserved words is that IPL is not case-sensitive. So if
VHFAWG is reserved, all of vhfawg, Vhfawg, VhFaWg, and every other spelling
of VHFAWG are also reserved.

June 1999 Version 6.4 5–15

HSD Pattern Tools IMAGE Pattern Language

Main Menu

Words used in pattern syntax are reserved. See sections 2, 3, and 4 for the syn-
tax for pattern files. See the “Reserved Word List” on page A–1 of the IMAGE
Base Language Manual for reserved words in IPL and ITL.

5.1.10 Sample IPL File,
Including Separate
Pinmap File

/* Pinmap file: examplemap.h */
pinmap = {
1 "out_strobe" dib:H50_1 hsd50_drv:1,
2 "clock" dib:H50_2 hsd50_rcv:2,
3 "aux" dib:H50_3 hsd50_rcv:3,
4 "output" dib:105 plfsrc_hi,
5 "output_rtn" dib:106 plfsrc_lo,
6 "input" dib:H50_4 hsd50_rcv:4,
7 "VDD" dib:107 dutsrc,
8 "enable1" dib:H50_8 hsd50_rcv:8,
9 "enable2" dib:H50_9 hsd50_rcv:9,
10 dib:H50_10 hsd50_drv:10,
11 dib:H50_11 hsd50_drv:11,
12 dib:H50_12 hsd50_drv:12,
13 dib:H50_13 hsd50_drv:13,
14 dib:H50_14 hsd50_drv:14,
15 dib:H50_15 hsd50_drv:15,
16 dib:H50_16 hsd50_drv:16,
17 dib:H50_17 hsd50_drv:17,
18 dib:H50_18 hsd50_drv_rcv:18,
19 dib:H50_19 hsd50_drv_rcv:19,
20 dib:H50_40 hsd50_drv_rcv:40,
21 "GROUND" dib:108 dutsrc,
22 dib:H50_35 hsd50_drv:35,
23 dib:H50_34 hsd50_drv:34,
24 dib:H50_33 hsd50_drv:33,
25 dib:H50_32 hsd50_drv:32,
26 dib:H50_31 hsd50_drv:31,
27 dib:H50_30 hsd50_drv:30,
28 dib:H50_29 hsd50_drv:29,
29 dib:H50_28 hsd50_drv:28,
30 dib:H50_27 hsd50_drv:27,
31 dib:H50_26 hsd50_drv:26,
32 dib:H50_25 hsd50_drv:25,
33 dib:H50_24 hsd50_drv:24,
34 dib:H50_23 hsd50_drv:23,
35 dib:H50_22 hsd50_drv:22,
36 dib:H50_21 hsd50_drv:21,
37 dib:H50_20 hsd50_drv:20,
38 dib:H50_36 hsd50_rcv:36,
39 dib:H50_37 hsd50_rcv:37,
40 dib:H50_38 hsd50_rcv:38,
41 dib:H50_39 hsd50_rcv:39,
42 "VCC" dib:109 dutsrc,

(10,11,12,13,14,15,16,17) "databyte" field,
(18,19,20) "iocode" field,
(37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22) "byteaddr" field,

June 1999 Version 6.4 5–16

HSD Pattern Tools IMAGE Pattern Language

Main Menu

(38,39,40,41) "iocontrol" field,
}; /* end of pinmap file: examplemap.h */

/* Source File: example.tp */
waveforms = { input PLFSRC, output PLFDIG }
vector ((1 to 3, 8, 9), databyte:D, byteaddr:H, iocode:O, iocontrol:B) {
/*@
*LABEL COMMAND 12389 databyte byteaddr iocode iocontrol */
GLOBAL p1: TSET 1 H1X01 .r0 .d1E00 .d0 .d0001 ;

L0X-1 .r0 .d1E01 .d0 .d0001 ;
SET_LOOP 10 L1X-1 .r0 .d1E02 .d0 .d0001 ;

LOOP1: L0X-1 .r0 .d1E03 .d0 .d0001 ;
REPEAT 35 L1X-1 .r0 .d1E04 .d0 .d0001 ;
END_LOOP loop1 H0X-1 .r0 .d1E05 .d0 .d0001 ;
CALL subr1 L1X-1 .r0 .d1E06 .d0 .d0001 ;
PLFDIG = (output) TRIG L0X-1 .r0 .d1E07 .d0 .d0001 ;
IF (PASS) CALL subr2 L1X-1 .r0 .d1E08 .d0 .d0001 ;
HALT ICYC PLFSRC = (input) STOP

L0X-1 .r0 .d1E09 .d0 .d0001 ;
subr1: READCODE 101 L1X-1 .r127 .d1E0a .d0 .d0001 ;

PLFSRC = (input) VBC_STR
L0X-1 .r126 .d1E0b .d0 .d0001 ;

PLFSRC = (input) TRIG L1X-1 .r125 .d1FFF .d0 .d0001 ;
RETURN L0X-1 .r124 .d1FFF .d0 .d0001 ;

subr2: SET_GLO j1 L1X-1 .r0 .d1FFF .d0 .d0001 ;
H0X-1 .r0 .d1FFF .d0 .d0001 ;

IF (EXT) JMP_GLO L1X-1 .r0 .d1FFF .d0 .d0001 ;
REPEAT 5 L0X-1 .r0 .d1FFF .d0 .d0001 ;

L1X-1 .r0 .d1FFF .d0 .d0001 ;
j1: RETURN L0X-1 .r0 .d1FFF .d0 .d0001 ;
GLOBAL p2: TSET 5 L1X-1 .r0 .d1FFF .d0 .d0001 ;

L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
H1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
L0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;
H0X-1 .r0 .d1FFF .d0 .d0001 ;
L1X-1 .r0 .d1FFF .d0 .d0001 ;

}

June 1999 Version 6.4 5–17

HSD Pattern Tools IMAGE Pattern Compiler

Main Menu

5.2 IMAGE Pattern
Compiler

The IMAGE Pattern Compiler (ipc) compiles IMAGE Pattern Language (IPL)
files containing vector data and produces a binary pattern file (a file with the
.pat extension) suitable for loading into tester memory or for examination or
modification by the pattern editor. ipc can produce pattern files for A500 hard-
ware or AMS (Advanced Mixed-Signal) hardware. It determines the targeted
hardware type in the following way:

• If the -filetype <hardware type> switch to ipc is used, it produces
pattern files targeted for that hardware type. Legal types are a500 and
hsd50.

• If no -filetype switch is found, the .tp file containing the pattern data
is scanned for a filetype = <hardware type> statement. This state-
ment must occur before the first vector statement in the file. Legal hard-
ware types are a500 and hsd50.

• If neither a -filetype switch nor a filetype statement is found, the tar-
geted hardware type is the A500.

• If both a -filetype switch and a -filetype statement are found and
they are different, the -filetype switch overrides the -filetype state-
ment. A warning is issued if this occurs.

ipc runs fastest when the -filetype <hardware type> switch is used,
since the file need not be read to determine the target hardware type. Invoke it
using the following command:

Where:

-filetype <hardware type>
Specifies the target hardware type. Legal types are
a500 and hsd50.

<infile> Is the name of one or more IPL files. If you do not
specify a filename extension, the pattern compiler
assumes it has the extension .tp. For instance, the
command ipc demo is interpreted as ipc demo.tp.

-output <outfile> Specifies the name of the output file. By default, ipc
gives its output file the same root name as its source
file, but appends onto it a .pat filename extension.
This switch allows you to specify a different name for
the output file.

ipc -filetype <hardware type> <infile>
-output <output file>
-define <name>
-define <name>=<def>
-map <pinmapfile or DIBViewfile>
-max_errors <count>
-tab <tab width>
-nocomments
-pram_only
-pram_size <number>
-compat
-1m
-scan <scan memory type>
-no_delimiters

June 1999 Version 6.4 5–18

HSD Pattern Tools IMAGE Pattern Compiler

Main Menu

-define <name> Defines <name> as the number one (1). Used for con-
ditional compiling.

-define <name>=<definition>
Replaces every occurrence of <name> in the source
file with its definition.

-map <pinmap file, DIBView file>
Is the name of a file containing a pinmap or DIBView
schematic.

-max_errors <count> Is the number of errors to allow before aborting the
compile. The default is 50.

-tab <tab width> When the pattern compiler encounters tabs in its
source file, it converts them to spaces in its output
file. tab specifies the number of spaces for each tab.
This switch can be used to preserve the readability
of comments. (Default is 8)

-nocomments Prevents comments from being included in the out-
put file. This decreases the size of the output file.

-pram_only Directs the pattern compiler to compile the pattern
for PRAM-only. The pattern is placed entirely in
PRAM instead of being split between PRAM and
SAM. This switch works best for small pattern sub-
routines called many times and is not recommended
for any other use. This switch is for AMS patterns
only.

-pram_size <number> ipc assumes a PRAM size of the specified num-
ber.The default is 16k (16384). This switch is for
AMS patterns only.

-compat ipc accepts certain syntax that is legal on A500 but
not normally accepted for the AMS.

-1m Using the -1m switch creates patterns with the
unrestricted split. ipc allows you to compile
patterns with the restricted (SAM/PRAM) split
(the default state) or unrestricted split. Use
unrestricted split only when compiling pat-
terns for test systems containing DMF boards hav-
ing revisions -07 or higher. Pattern created with
restricted split can run on any testers, but the
patterns do not make full use of SAM memory due to
a hardware problem corrected in DMF boards with
revisions -07 and higher (see “Digital Pattern
Debugger” on page 4–1).

<scan memory type> Is
pramsam – selects the parallel memory
vbms – selects the VBMS
If no -scan flag is used, the default is pramsam.

-no_delimiters This switch removes comment delimiters (/* and */
) from the pattern file during compilation. Delimit-
ers do not appear in the pattern editor or debugger.
The reverse compiler (iprc_hsd50) restores the
comment delimiters when creating the .tp file,

June 1999 Version 6.4 5–19

HSD Pattern Tools IMAGE Pattern Reverse Compiler

Main Menu

although the spacing may be slightly different than
in the original .tp file.

Examples:

ipc demo

The source file is named demo.tp, which is an IPL file. For demo.tp, the pat-
tern compiler generates a binary pattern file named demo.pat. Another exam-
ple is

ipc -define version_a demo

Again, the IPL source file is named demo.tp and the output file is named
demo.pat. Any statement between #ifndef version_a and #endif are dis-
carded. Any statement between #ifdef version_a and #endif are included
in the compilation.

ipc -nocomments -output toad.pat demo

The IPL source file is named demo.tp. During compilation, the pattern com-
piler discards all comments in demo.tp. The output from the compilation is
stored in a pattern file named toad.pat.

5.3 IMAGE Pattern
Reverse Compiler

The IMAGE Pattern Reverse-Compiler (iprc_hsd50) reverses the actions of
the pattern compiler. It takes the contents of a binary pattern file (.pat), con-
verts it to IPL syntax, processes the IPL code through the IMAGE Pattern
Beautifier (ipb), then outputs it to an IPL text file.

The command for reverse-compiling a pattern is:

Where:

-map <pinmap file or DIBView>
Specifies the name of the file containing the pinmap
or DIBView schematic.

-f This forces the recompile. It overwrites the existing
output file without confirmation.

-include <infile(s)>Adds the specified #include statement to the out-
put file.

-output <outfile> Specifies the name for the output file. By default, the
reverse compiler is given the same root name as the
pattern file with the filename extension changed to

iprc_hsd50 -map <pinmap file or <pattern file(s)>
DIBView file>

-f
-include <infile(s)>
-output <outfile>
-define <name>
-define <name> = <def>
-noipb
-tab <number>
-addvectnum
-header
-width <number>
-length <number>
-page
-oneline

June 1999 Version 6.4 5–20

HSD Pattern Tools IMAGE Pattern Reverse Compiler

Main Menu

.tp. This switch allows you to override this default
and specify any output file name. If the name does
not have a .tp extension, the pattern beautifier
rejects it.

-define <name> Define <name> as the number one (1) wherever it
occurs in the pinmap. Used when reverse-compiling
a pattern which has a conditionally compiled pin-
map.

-define <name> = <def>
Replaces every occurrence of <name> in the pinmap
with <def>. Used when reverse-compiling a pattern
which has a conditionally compiled pinmap.

-noipb Inhibits the pattern beautifier from processing the
output file.

-tab <number> Directs the pattern beautifier to replace each tab
with the specified number of spaces.

-addvectnum Directs the pattern beautifier to add a vector num-
ber to each vector.

-header Directs the pattern beautifier to include column
headers in its output, similar to what you would see
in a pattern editor display.

-width <number> Tells the pattern beautifier the page width for the
output file.

-length <number> Tells the pattern beautifier the number of lines per
page for the output file.

-page Directs the pattern beautifier to break the pages at
page boundaries. If the -header switch is also spec-
ified, column headers are included at the top of each
page.

<pattern file(s)> Identifies the name of the pattern file or files for the
reverse-compilation. If you do not specify an exten-
sion in the file name, .pat is assumed.

-oneline Directs the pattern beautifier to put all data from a
single vector input line onto the same output line,
even if the line width is exceeded. If this switch is not
specified, ipb starts a new line when the line width
is exceeded. (The default line width is 132 charac-
ters, but the default can be changed using the
-width switch.)

5.3.1 Pinmaps and DIBView
Schematics

A pinmap or DIBView schematic allows the reverse-compiler to refer to DUT
pins directly through the pin numbers and pin names defined in the pinmap or
DIBView schematic rather than indirectly through tester channel numbers.
The reverse-compiler must be notified that the pinmap file or DIBView sche-
matic exists. Do this using the -map switch in the iprc_hsd50 command. The
reverse-compiler responds to -map by extracting the pinmap or DIBView sche-
matic from the named file and using it to map tester channels to DUT pins
when defining its pin list.

June 1999 Version 6.4 5–21

HSD Pattern Tools IMAGE Pattern Beautifier

Main Menu

5.3.2 Specifying the Output
File

By default, the output file name is given the same root name as the pattern file
with the filename extension changed to .tp. The -output switch allows you to
override this default and specify any output file name. If the output file already
exists, you are asked to confirm the overwrite unless the -f switch is specified.

5.3.3 Specifying Include
Files

The reverse-compiler has no knowledge of what #include files were used
when compiling a pattern. Therefore, you must specify any #include files
using the -include switch in the iprc_hsd50 command. For each file speci-
fied in the -include switch, the reverse compiler generates an #include
statement in its output file, in the order listed in the switch.

5.3.4 Beautifying the Output To make the IPL code more readable, the reverse-compiler automatically sends
its output to the pattern beautifier for processing. The switches -tab,
-addvectnum, -header, -width, -length, and -page are all passed to the
beautifier to customize the output.

Running the output text from the reverse-compiler through the pattern beau-
tifier adds extra time to the translation process. If the appearance of the output
is not important, you can reduce processing time by not running the output
through the beautifier. Use the -noipb switch to bypass the pattern beautifier.
Specifying -noipb deactivates -tab, -addvectnum, -header, -width,
-length, and -page.

5.3.5 Comments The reverse-compiler automatically scans comments in a pattern and inserts
missing comment delimiters (/* and */) where necessary. This ensures that
the IPL file produced by the reverse-compiler can be recompiled by the pattern
compiler without errors or modification.

5.3.6 Limitations of the
Reverse Compiler

If a pattern is compiled and then reverse-compiled, the resulting pattern may
not match the original pattern. This is because some features of the IMAGE
Pattern Language are not recoverable from the binary pattern (.pat) file. The
limitations are as follows:

• Any C preprocessor directives (such as #define, #ifdef, and #include)
are lost, except for the include files specified in an iprc_hsd50 command.

• Channel and pin specifications may not appear exactly as originally
defined. The rules are:
– If -map is specified in the iprc_hsd50 command and the channel is in

the pinmap, the reverse-compiler uses the DUT pin name. If it has no
name, the reverse-compiler uses the pin number.

– If there is no pinmap or the channel is not found in the map, the
reverse-compiler uses the INST: or SLOT: syntax and the instrument
or slot number.

• If a pin is mapped to more than one analog instrument, only the first
instrument is mapped to the pin.

5.4 IMAGE Pattern
Beautifier

The IMAGE Pattern Beautifier (ipb) makes the contents of an IPL file more
readable by organizing the vector fields into columns. It can also prepare the
text for printing by breaking it into pages of specified length and width with
column headers on each page. In addition, the pattern beautifier can add vector
numbers to each vector or remove them from each vector. Beautifying an IPL
file does not affect the way it compiles.

The pattern beautifier does not always correctly beautify an IPL file containing
errors. However, it does not introduce errors either.

June 1999 Version 6.4 5–22

HSD Pattern Tools IMAGE Pattern Beautifier

Main Menu

The command for beautifying an IPL file is:

Where:

-width <number> Specifies the page width in columns. (Default is 132
columns)

-page Breaks the text into pages and prints a new header
on each page if -header is specified.

-length <number> Specifies the number of lines per page. (Default is
60)

-header Includes column headers, similar to what you would
see in a Digital Pattern Editor Display.

-tab <number> Specifies the number of spaces for each tab. A tab
size of 0 (zero) means no tabs. (Default is 8)

-addvectnum Adds a vector number to each vector.

-stripvectnum Removes all vector numbers.

-inplace Writes the output back to the <input file>, while
saving the original file as <input file>%.

-output <outfile> Writes the output to <outfile> instead of display-
ing it on your terminal (standard output).

<input file> Is the name of the input file for the pattern beauti-
fier. If the name does not include a filename exten-
sion, .tp is assumed.

-oneline Directs the pattern beautifier to put all data from a
single vector input line onto the same output line,
even if the line width is exceeded. If this switch is not
specified, ipb starts a new line when the line width
is exceeded. (The default line width is 132 charac-
ters, but the default can be changed using the
-width switch.)

An example would be:

ipb -width 80 -page -header -tab 0 -addvectnum -inplace
myfile

or

ipb -w 80 -p -h -t 0 -a -i myfile

This command beautifies the file myfile.tp. In the process, it arranges the
output to fit on an 80 space by 60 line page with a header comment at the begin-
ning of each page. No tabs are used. Each vector is preceded by a vector num-
ber. The output is written back to the file myfile.tp.

ipb -width <number> <input file>
-page [-length <number>]
-header
-tab <number>
-addvectnum | -stripvectnum
-inplace | -output <outfile>
-oneline

June 1999 Version 6.4 5–23

HSD Pattern Tools IMAGE Pattern Beautifier

Main Menu

5.4.1 Comments The pattern beautifier normally preserves comments. If the -header option is
specified, the header information is included as a comment at the beginning of
a vector statement. If -page is specified with the -header switch, a header is
added to each new page.

When the pattern beautifier adds a comment, it begins the comment with /
@@. But it also discards any comments in the input file beginning with /@@.
This means the pattern beautifier can process an IPL file a second time without
reproducing its comments a second time.

All comments within vector statements are repositioned, if necessary, on a line
(or lines) by themselves, between the ending semicolon of one vector and the
beginning of the next vector.

5.4.2 Vector Numbers By default, the pattern beautifier preserves all vector numbers. To remove vec-
tor numbers from an IPL file, specify the -stripvectnum switch. stripvec-
num does not affect vector numbers specified as relative offsets (vector numbers
preceded by “+”).

The -addvectnum switch adds vector numbers to the beginning of any vector
that does not already have one.

5.4.3 Example Given the following IPL text:

vector ((1 to 3, 8, 9), 6, databyte:D, byteaddr:H, iocode:O, iocontrol:B,
(43 to 58):H, 59, 60, 61, 62, 63)

{
GLOBAL p1: TSET 1 H1X01 L .r255 .d1E00 .d0 .d0001 .r1234 H 0 1 L H;

loop1: LOOP 10 L1X-1 0 .r253 .d1E02 .d755 .d0001 .r5678 0 1 L H 0 ;

L0X-1 1 .r252 .d1E03 .d0 .d0001 .dBA98 1 L H 0 1 ;
REPEAT 35 L1X-1 L .r251 .d1E04 .d0 .d0001 .r1234 L H 0 1 L;
END_LOOP loop1 H0X-1 H .r250 .d1E04 .d0 .d0001 .r1234 L H 0 1 L;
CALL subr1 L1X-1 0 .r249 .d1E06 .d0 .d0001 .r5678 0 1 L H 0;

The pattern beautifier reformats it as follows:

vector ((1 to 3, 8, 9), 6, databyte:D, byteaddr:H, iocode:O, iocontrol:B,
(43 to 58):H, 59, 60, 61, 62, 63)

{
/*@@ data byte ioc iocon 44444> 5 6 6 6 6

12389 6 byte addr ode trol 34567> 9 0 1 2 3
***/
0 GLOBAL p1:TSET 1 H1X01 L .r255 .d1E00.d0 .d0001 .r1234 H 0 1 L H;
1 loop1: LOOP 10 L1X-1 0 .r253 .d1E02.d755 .d0001 .r5678 0 1 L H 0;
2 L0X-1 1 .r252 .d1E03.d0 .d0001 .dBA98 1 L H 0 1;
3 REPEAT 35 L1X-1 L .r251 .d1E04.d0 .d0001 .r1234 L H 0 1 L;
4 END_LOOP loop1 H0X-1 H .r250 .d1E04.d0 .d0001 .r1234 L H 0 1 L;
5 CALL subr1 L1X-1 0 .r249 .d1E06.d0 .d0001 .r5678 0 1 L H 0;
};

�

