
Error Vector Magnitude (EVM) Testing:
Improving Throughput and Flexibility Using

FPGA Augmentation
Mark Roos – President & CEO, Roos Instruments

 Devin Morris – Applications Engineer, Roos Instruments

ABSTRACT - Presented is an ATE test solution that
employs an FPGA to supplement DSP
requirements and data throughput for fast
measurement of EVM. This approach seeks to
enhance tester flexibility to support new and
emerging test standards and devices. A general
description of EVM is provided in addition to an
overview of the test module architecture. The role
of the FPGA and subsequent DSP architecture is
provided to illustrate areas of high-speed
processing demand and demonstrate strategies for
reduced test time and enhanced data throughput.
A case analysis of two different DSP
implementations that compute differential EVM on
a captured baseband Bluetooth signal are
presented. A comparison of their performance
illustrates non-ideal hardware and digital
impairments both from a signal processing and
deconstruction standpoint, as well as their
subsequent EVM results for tester architecture
considerations and DSP design edification.

INTRODUCTION
 With the complexity of integrated radio
designs and system on a chip (SoC) architectures
becoming more prevalent, the demand for a
strategy that enables efficient and reliable test of
sub-system components and system-level
verification has become necessary. Mitigating the
added complication of embedded test points and
extensive test time has becomes paramount to
controlling cost in this environment. This has lead
to the wide acceptance of Error Vector Magnitude
as an important measurement in qualifying radio
operation. There has been increased interest in
implementing it in a production test environment
because an EVM test offers the advantage of
minimal I/O requirements, test signal stimuli that
replicate “live operating conditions,” and a
standardized measurement that qualifies the digital
and analog/RF operation of a device under test

within a single test metric. However, this
measurement requires processing of substantially
large data sets and places considerable DSP
requirements on the tester to address the highly
intensive computational load of evaluating EVM.
To offset these prerequisites, an ATE strategy that
employs an EVM test module with an integrated
FPGA co-processor is proposed. This approach
provides a flexible platform to support new and
emerging radio standards as well as providing a
high performance DSP conduit between the data
capture hardware and PC controller/interface to
improve data throughput in computing EVM.

BACKGROUND
 EVM is a measurement that directly links
the digital and analog components of a radio by
means of quantifying the signal’s modulation
accuracy in the symbol constellation domain.
Groups of digital bits are represented as symbol
points in this Cartesian coordinate system where
the Inphase and Quadrature (IQ) analog signals
serve as the x and y variables with a relationship of
2n number of symbols representing n number of
bits, see Figure 1. During the modulation of the
data, digital, analog/RF and random noise
impairments manifest themselves in the symbol
constellation as deviations from the ideal symbol
points. By quantifying this deviation, it is possible
to verify the operation of the entire modulation
system within a DUT by analyzing its output
modulated signal. Additional analysis of the
deviation’s behavior and overall characteristics in
the constellation domain allows for identification
of individual impairments such as:

‐ Amplifier non-linearity
‐ LO leakage
‐ Channel interference
‐ Quantization noise
‐ Quadrature offset
‐ IQ imbalance

 

Figure 1: Translation of digital bits to analog signals in a
modulation scheme: digital bits grouped according to modulation
scheme (top); symbol constellation diagram of the corresponding
bits (bottom-left); corresponding Inphase and Quadrature analog
signals with included symbol points (white dots) for 16-QAM
(bottom-right)

The computation of EVM itself is fairly
straightforward: The recovered symbols measured
from the DUT are subtracted from their
ideal/reference symbols in the constellation
domain. The magnitude of this difference vector is
computed to produce the EVM of a symbol, which
is typically averaged over several symbols to give
an overall perspective of the DUT’s system
performance. In order to adequately characterize
the DUT, the measurement is generally executed
with a random bit pattern as the stimuli signal that
spans the entire set of symbols in the constellation
and exercises the DUT in a manner similar to how
it would normally operate. The difficulty in
making this measurement is the time and resource
consuming nature of capturing and deconstructing
the IQ signals from the DUT down to the symbol
points needed for computing EVM. By inserting
an FPGA into the demodulation chain, it is possible
to mitigate the large data burden and subsequent
DSP of the measured signal. This has the potential
to reduce the processing time from tens or
hundreds of milliseconds down to microseconds.

HARDWARE ARCHITECTURE
 Figure 3 demonstrates the overall hardware
setup and general signal flow in the testing of
transmitted EVM using an FPGA. The data
processed to compute EVM are captured from the
output of the DUT with a complex detector which
serves as a wide band down converter of both the I
and Q paths. Once digitized, the demodulation of

Figure 2: Calculating EVM: Constellation representation of
recovered symbol data (top-left); Vector representation of EVM
(top-right); Mathematical representation of EVM in terms of
averaged values (bottom)

the data down to the necessary IQ symbol points is
left to the FPGA. There are two distinct
advantages with this approach: (1) can take
advantage of the FPGA’s high speed I/O to stream
digital data directly to the signal processing stage,
and (2) utilize the dedicated DSP resources to
process the data in real-time. In order to facilitate
this large reduction in test time, portions of the
digital demodulation process were evaluated for
implementation in an FPGA by whether:

‐ The demodulation component requires
intensive processing

‐ It can be sufficiently reconstructed within
the FPGA’s limited DSP resources

‐ The ability to reconfigure or re-task the
component/s provides adequate flexibility
to support multiple applications.

Pulse-shaping filters, IQ compensation/correction,
symbol timing recovery, and the EVM
measurement meet one or several of these criteria,
and are the focus of interest in terms of
implementation.
  As will be demonstrated in the subsequent
case analysis, rigorous design control over the
tester hardware and DSP techniques are key in
preventing impairments created by the test
equipment from skewing the EVM measurement.
Though the stages in the digital demodulation are
clearly defined, there are a multitude of DSP
techniques and methodologies to execute these
mechanisms. This point, coupled with the complex
interplay of the hardware and DSP stages in the

tester create a difficult environment to indentify
and characterize errors generated internally.
Demonstrated in the following section is an
example of this type of systemic error in the tester
procedure.

Figure 3: Overview of the architecture of the ATE solution for
EVM measurement

CASE ANALYSIS
 In the follow case study data an 8DPSK
baseband Bluetooth transmitter DUT was digitized
using a Teradyne tester and provided for signal
analysis. The data was input to two different DSP
techniques for signal demodulation and
computation of differential EVM (DEVM) in
accordance to Bluetooth specifications. The
demodulation method used by the customer’s test
plan (Method B) was a MATLAB script that would
accept a captured data stream from the tester,
demodulate the data and compute DEVM. The
methods in this routine were compared against a
MATLAB/Simulink demodulation method and
DEVM/EVM measurement developed at Roos
Instruments (Method A) to be implemented in an
FPGA. The focus was to identify and characterize
impairments in the customer’s DUT, differentiate
them from impairments in the demodulation
process, and quantify the effects in term of
DEVM/EVM for both approaches. The
comparison of the DSP techniques and analysis
identify and discern test errors in both the hardware
and software paths and provide insight into
optimizing the demodulation process in the tester
for more accurate measurement. As well, the step-
by-step process taken to deconstruct the
impairments and identify the sources of error in the

measurement are presented to outline a debugging
strategy for this type of testing and to provide merit
to the procedure. As will be demonstrated,
impairments introduced by the data capture process
and artifacts created by the demodulation
algorithms severely affected the resulting
DEVM/EVM measurement.
 The guidelines that both methods of digital
demodulation and DEVM used were based on
those outlined in the Bluetooth Specifications:
Version 2.1. However there were some differences
between them, most notably the partitioning of the
data set for processing and the methodology for
signal correction. Method B partitioned the data
into blocks of 50 symbols for processing, setting
correction values for IQ imbalance, frequency and
phase offset using a constrained nonlinear
multivariable function solver to minimize the
resulting DEVM. This used a recursive algorithm
to optimize the correction factors for each set of 50
symbols. Below is the code’s method flow:

1) Input data from file
2) Apply Filter

a) Square Root Raised Cosine
3) Synch Data Stream (similar to carrier recovery)

a) Use preamble
4) Remove preamble from data
5) Partition data into packets of 50 symbols
6) Frequency Offset Correction

a) Recursive algorithm optimizing for
minimal EVM/DEVM

7) Phase Offset Correction
a) Recursive algorithm optimizing for

minimal EVM/DEVM
8) IQ Imbalance Compensation

a) MATLAB Optimization Toolbox algorithm
based on minimal EVM/DEVM

9) Compute and output EVM/DEVM

Method A processed the correction factors of IQ
imbalance, and phase offset with manually
adjustment by the user across the entire set of data
before partitioning the recovered symbols into
blocks of 50 for computing DEVM. This was done
as a precursory debugging strategy in order to
allow for user control in adjusting the correction
factors while the data was being demodulated. By
keeping the correction factors constant across the
entire set of data, this prevented artifacts created by

the partitioning and compensation techniques from
masking and or skewing behavior inherent in the
capture system, demodulation process and/or the
DUT impairments. Once the behavior and errors
of the tester, DUT and demodulation algorithms
could be identified, uncoupled from each other and
then removed, the data could then benefit from
phase, frequency and gain correction according to
Bluetooth Specifications.
 As stated before, the Simulink
demodulation system used in Method A utilized
components that translate directly to their FPGA
counterparts. The demodulator was comprised of
several arithmetic and communication blocks that
together comprised a complete system for
recovering the data, correcting for impairments,
and computing DEVM/EVM in a similar fashion to
Method B with the additional test metrics provided
by a vector signal analyzer for debugging purposes.
The preamble was removed from the data, and the
data was processed as one large set of streaming
data. The demodulation tool’s
correction/compensation arithmetic could be
accessed during simulation runtime and served as a
synthetic instrument of a vector signal analyzer.
With this analysis environment it was possible to
view, measure and manually correct for:
Quadrature offset error, IQ imbalance, Gain
adjustment, DC offset correction, Magnitude Error,
and Phase Error. The symbol timing recovery
algorithm used was optimized for D8PDK.. The
Squaring timing method was used for symbol
recovery by estimating the symbol timing phase
offset for a given sequence and outputting only the
symbol spaced values by applying the estimate of
the symbol location in the data uniformly over the
sequence of data. For the captured data, there are
16 data points/symbol yielding 2793 symbols for
the entire set of 44688 data points analyzed(after
preamble removal). For this demodulation system,
the data was processed in blocks 32768 data points,
i.e. the largest integer multiple of 16 that was less
than or equal to 44688. This was done to process
as many points as possible with the same phase and
timing recovery constants to reduce transient
phenomena in the recovered symbols introduced by
the demodulation system. This recovery technique
kept the symbol-timing phase constant for the
entire observation interval, making it ideal for the
observation of short duration transients, or random

phase perturbations such as jitter in the data
capture process.
 Initially the data demonstrated considerable
quadrature offset, that later was shown to be caused
by the capture system rather than the DUT. This
example however demonstrates the initial difficulty
in uncoupling the tester impairments in the
demodulation flow from the DUT. Following are
the correction factors used on the initial recovered
symbols before DEVM/EVM was calculated:

Quadrature offset error: 32.4o
IQ imbalance (I/Q): 1/1.14
DC offset error (I/Q): -0.08/-0.04
Gain Adjustment: 11.4

Figure 4: DEVM comparison between Method A (red) and

Method B (cyan)

 Once the symbols were recovered and error
correction was completed, measurement of the
remaining symbol error (DEVM/EVM) could be
computed as seen in Figure 4, for both Method A
and the Method B for comparison. The immediate
discrepancy was the difference in the total number
of symbols used for DEVM. Method B was
limited to a total of 500 symbols for demodulation
and DEVM/EVM, but the data was found to
contain ~2793 symbols, excluding the initial
preamble. This discrepancy was simply an internal
processing preference to speed test time by limiting
the data set to 10 groups of 50 symbol sets.
Looking at the DEVM of Method A, it was
significantly high initially and then reduces down
to less than ~0.20rms with occasionally bursts of
DEVM around 0.8rms. Method B had similar
peaks of around 0.8rms periodic with the symbol
sets of 50, and an average value around ~0.2rms.
Due to the periodicity of the large spikes in Method

B’s DEVM measurement, they were likely the
product of the demodulation method/algorithm.
Looking at the recovered symbol constellation
points in Figure 5 further strengthens this claim.

Figure 5: Demodulated symbols comparison between Method A

(red) and Method B (cyan)

 The clusters of symbol points from Method
B have considerable more noise than the points
demodulated using Method A. As a point of
reference, in an ideal 8-PSK signal (no noise and/or
impairments), the symbols points in the
constellation would cluster around their ideal phase
values: {0o, 45o, 90o, 135o, 180o, 225o, 270o,
315o}. It was difficult to explain the noisy
behavior in Method B due to the
compartmentalized/”black box” nature of the built-
in MATLAB functions used to optimize
phase/frequency offset and IQ imbalance. The
error was most likely attributed to a combination of
an insufficiently small data set to optimize across,
coupled with a significant impairment(phase noise)
in the data that renders the optimization to self-
defeat. Suffice it to say that this approach of
granting optimization algorithms free reign to seek
a solution based on minimizing DEVM requires
more oversight to prevent unpredictable results.
Regardless of how the optimization technique
arrived at the correction factor solution, this
implementation yields a much more unstable and
ultimately less optimal symbol recovery technique
that was severely skewing any further conducted

measurements downstream. However, looking at
the recovered symbols from Method A, there was
still a considerable amount of phase noise that was
affecting the data, and the root cause of this has yet
to be determined. In an effort to identify the cause
of this, the following methodology was
constructed.
 With an impetus on isolating, and
determining the nature of the phase behavior
observed in the demodulated signal and large
spikes in the DEVM measurement in Method A, a
behavioral model was constructed using an
identical demodulation system. Driven by an ideal
Differential 8-PSK signal generator and user
controlled impairment blocks to simulate IQ
imbalance, quadrature offset, phase noise, carrier
frequency drift, and signal noise. With this model,
it was possible to emulate the behavior seen in the
data from Method A, and extract measurements of
the signal.
 Using a phase noise generator and
analyzing the symbol phase behavior and resulting
DEVM/symbol, it was possible to recreate the
noise behavior of the captured signal using
50.5dBc/Hz and SNR (Es/No) of 46dB. By
analyzing each symbol “phase channel” it was
possible to view the distribution of the symbol
phase. In the case of phase noise, each symbol
phase channel has essentially a Gaussian
distribution about their respective ideal value. The
phase range recorded in this experiment yielded a
distribution about the phase channel’s ideal value
to be +/- 18o with a σ = 5.6o. This produced
comparable DEVM behavior in terms of both
average baseline DEVM(symbol regions with no
spikes): Simulation – 0.0574 rms; Captured Data –
0.0509 rms, and with sufficient simulation runtime,
random peaking of DEVM similar to that seen in
the data of 0.8 rms. However, this failed to
adequately explain the dense collection of spikes
found in the beginning portion of the captured data
DEVM in the symbol range of 0 - 1000.

Figure 6: Captured symbol phase “sub channels”

behavior and resulting DEVM/EVM vs. Symbol Index

 With a mechanism to compare against in
the behavioral model, the phase symbol sub
channels were analyzed from the provided data.
Comparing the phase relationship of the captured
data, symbol for symbol with DEVM/EVM in
Figure 6. It becomes quite apparent that a transient
in the beginning portion of the data was causing the
symbol phase in each channel to change, and
affecting the EVM/DEVM. It’s also worth noting
in this specific case, there was a high correlation
between EVM and DEVM ruling out a constant
frequency/phase offset as a potential impairment
culprit.
 Employing the same strategy used to
extract the phase behavior of a symbol “channel”
in the simulation model, a subchannel of symbol
phase points was extracted and used to produce a
model of the phase behavior that was consistent
across each subchannel. Since the accuracy of the
interpolation was dependent on the number of
points contained in each specific symbol
“channel”, and the data was pseudo random, the
symbol phases occurring at -135o were selected
arbitrarily for their perceived high concentration
across the entire signal range.
 Several iterations of curve fitting were
employed to seek an optimum solution to use as
phase correction of the original data by subtraction
of a normalized, mirror image of these phase
function approximations from the phase of the
original signal. In the following figures are graphs
of the results of this methodology.

Figure 7: Comparison of Original Phase Symbols (top-left) &
DEVM (bottom) vs. Phase Corrected Data Symbols (top-right)
& DEVM (bottom): First Iteration – Interpolated function; 9th

Degree Poly. Regression

 In Figure 7, the first two function iterations
are demonstrated: the raw interpolated data
approximation, and a 9th degree polynomial
regression best-fit line of the interpolated data.
Comparing the phase behavior of the original data
vs. the phase corrected using these two types of
curves shows a considerable improvement in
removing the transient. This was also reflected in
the DEVM, with the initial peaks now significantly
reduced. The peak around symbol index 1850 was
still present in all cases, as well as new peaks
created by the interpolated function correction
around symbols 750 and 2350. These new peaks
are most likely a byproduct of constructive phase
noise error caused by the addition of the “noisy”
phase approximation of the interpolated method.
Note that the polynomial regression, which
employs a smooth function approximation,
eliminates these spurious values of DEVM.

Figure 8: Comparison of Original Data Phase & DEVM vs.
Phase Corrected Data Phase & DEVM: Second Iteration –

Modified 9th Degree Poly. Regression; RLC Transient Response

 In the second iteration of phase correction,
a modified 9th degree polynomial regression and an
RLC transient approximation are used with the
results shown in Figure 8. Both these iterations
were able to eliminate the spurious peaks in the
DEVM measurement, with the RLC transient
correction eliminating all of the spikes. The RLC
correction process demonstrated a high likelihood
that these anomalies were a product of the tester
hardware, and most likely caused by a transient
during start-up, test initialization, etc. Because the
transient was severe enough initially, and the decay
rate was roughly 25% of the entire data set, the
overall effect in the constellation domain mimicked
quadrature offset of what was previously reported
of roughly 32o. The phase correction of the
transient via the recovered symbols resulted in the
mitigation of this measured quadrature offset, but a
remaining phase noise of approximately 9% could
now be linked to the DUT with a high degree of
certainty. The RLC phase correction dramatically
improved the peak DEVM and EVM by roughly a
factor of 3x from 85%rms originally to 29%rms. It
was interesting to note that the large peaks in the
DEVM/EVM of the original data would have
constituted a failed part by virtue of the Bluetooth
standards on acceptable DEVM/EVM; Looking at
the average value of DEVM/EVM on the entire set
of data, they contribute very little to the overall

average when corrected (difference of ~1-2%).
Over smaller sets of data, the contribution would
certainly be more substantial, but this overall
difference indicates the heightened sensitivity of
this measurement even with averaging of over a
1000 symbols.

CONCLUSION
 As seen in the example demonstrated,
signal constellation analysis and EVM provide
important feedback on the overall operation of a
DUT, or as in this case a self-check mechanism of
the tester. It also highlights the importance of a
close design synergy between the hardware and
DSP in an EVM tester in order to provide reliable
results. With the added benefit of inserting an
FPGA into the test module, considerable
improvements in test time can be achieved by
processing the large data sets in real-time with
dedicated DSP and passing the results to the ATE
controller PC. The continued increase in the signal
processing capabilities in the FPGA coupled with
supporting DSP development platforms such as
MATLAB have provided a springboard for quickly
and easily implementing various baseband
processing. With the ability to reconfigure the
baseband signal processing while maintaining the
tester’s hardware front-end, this architecture
provides a flexible EVM test platform that can
accommodate new and emerging standards.

 

