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ABSTRACT - Presented is an ATE test solution that 
employs an FPGA to supplement DSP 
requirements and data throughput for fast 
measurement of EVM.  This approach seeks to 
enhance tester flexibility to support new and 
emerging test standards and devices.  A general 
description of EVM is provided in addition to an 
overview of the test module architecture.  The role 
of the FPGA and subsequent DSP architecture is 
provided to illustrate areas of high-speed 
processing demand and demonstrate strategies for 
reduced test time and enhanced data throughput.  
A case analysis of two different DSP 
implementations that compute differential EVM on 
a captured baseband Bluetooth signal are 
presented.  A comparison of their performance 
illustrates non-ideal hardware and digital 
impairments both from a signal processing and 
deconstruction standpoint, as well as their 
subsequent EVM results for tester architecture 
considerations and DSP design edification.   
 

INTRODUCTION 
 With the complexity of integrated radio 
designs and system on a chip (SoC) architectures 
becoming more prevalent, the demand for a 
strategy that enables efficient and reliable test of 
sub-system components and system-level 
verification has become necessary.  Mitigating the 
added complication of embedded test points and 
extensive test time has becomes paramount to 
controlling cost in this environment.  This has lead 
to the wide acceptance of Error Vector Magnitude 
as an important measurement in qualifying radio 
operation. There has been increased interest in 
implementing it in a production test environment 
because  an EVM test offers the advantage of 
minimal I/O requirements, test signal stimuli that 
replicate “live operating conditions,” and a 
standardized measurement that qualifies the digital 
and analog/RF operation of a device under test 

within a single test metric.  However, this 
measurement requires processing of substantially 
large data sets and places considerable DSP 
requirements on the tester to address the highly 
intensive computational load of evaluating EVM.  
To offset these prerequisites, an ATE strategy that 
employs an EVM test module with an integrated 
FPGA co-processor is proposed.  This approach 
provides a flexible platform to support new and 
emerging radio standards as well as providing a 
high performance DSP conduit between the data 
capture hardware and PC controller/interface to 
improve data throughput in computing EVM. 
 

BACKGROUND 
 EVM is a measurement that directly links 
the digital and analog components of a radio by 
means of quantifying the signal’s modulation 
accuracy in the symbol constellation domain.  
Groups of digital bits are represented as symbol 
points in this Cartesian coordinate system where 
the Inphase and Quadrature (IQ) analog signals 
serve as the x and y variables with a relationship of 
2n number of symbols representing n number of 
bits, see Figure 1.  During the modulation of the 
data, digital, analog/RF and random noise 
impairments manifest themselves in the symbol 
constellation as deviations from the ideal symbol 
points.  By quantifying this deviation, it is possible 
to verify the operation of the entire modulation 
system within a DUT by analyzing its output 
modulated signal.  Additional analysis of the 
deviation’s behavior and overall characteristics in 
the constellation domain allows for identification 
of individual impairments such as:   

‐ Amplifier non-linearity 
‐ LO leakage 
‐ Channel interference 
‐ Quantization noise 
‐ Quadrature offset 
‐ IQ imbalance 



 

 
Figure 1:  Translation of digital bits to analog signals in a 
modulation scheme:  digital bits grouped according to modulation 
scheme (top); symbol constellation diagram of the corresponding 
bits (bottom-left); corresponding Inphase and Quadrature analog 
signals with included symbol points (white dots) for 16-QAM 
(bottom-right) 
 
The computation of EVM itself is fairly 
straightforward:  The recovered symbols measured 
from the DUT are subtracted from their 
ideal/reference symbols in the constellation 
domain.  The magnitude of this difference vector is 
computed to produce the EVM of a symbol, which 
is typically averaged over several symbols to give 
an overall perspective of the DUT’s system 
performance. In order to adequately characterize 
the DUT, the measurement is generally executed 
with a random bit pattern as the stimuli signal that 
spans the entire set of symbols in the constellation 
and exercises the DUT in a manner similar to how 
it would normally operate.  The difficulty in 
making this measurement is the time and resource 
consuming nature of capturing and deconstructing 
the IQ signals from the DUT down to the symbol 
points needed for computing EVM.  By inserting 
an FPGA into the demodulation chain, it is possible 
to mitigate the large data burden and subsequent 
DSP of the measured signal.  This has the potential 
to reduce the processing time from tens or 
hundreds of milliseconds down to microseconds.   
 

HARDWARE ARCHITECTURE 
 Figure 3 demonstrates the overall hardware 
setup and general signal flow in the testing of 
transmitted EVM using an FPGA.  The data 
processed to compute EVM are captured from the 
output of the DUT with a complex detector which 
serves as a wide band down converter of both the I 
and Q paths.  Once digitized, the demodulation of  

 

 
Figure 2:  Calculating EVM:  Constellation representation of 
recovered symbol data (top-left); Vector representation of EVM 
(top-right); Mathematical representation of EVM in terms of 
averaged values (bottom)  
 
the data down to the necessary IQ symbol points is 
left to the FPGA.  There are two distinct 
advantages with this approach:  (1) can take 
advantage of the FPGA’s high speed I/O to stream 
digital data directly to the signal processing stage, 
and (2) utilize the dedicated DSP resources to 
process the data in real-time.  In order to facilitate 
this large reduction in test time, portions of the 
digital demodulation process were evaluated for 
implementation in an FPGA by whether: 

‐ The demodulation component requires 
intensive processing 

‐ It can be sufficiently reconstructed within 
the FPGA’s limited DSP resources 

‐ The ability to reconfigure or re-task the 
component/s provides adequate flexibility 
to support multiple applications.   

 
Pulse-shaping filters, IQ compensation/correction, 
symbol timing recovery, and the EVM 
measurement meet one or several of these criteria, 
and are the focus of interest in terms of 
implementation.  
  As will be demonstrated in the subsequent 
case analysis, rigorous design control over the 
tester hardware and DSP techniques are key in 
preventing impairments created by the test 
equipment from skewing the EVM measurement.  
Though the stages in the digital demodulation are 
clearly defined, there are a multitude of DSP 
techniques and methodologies to execute these 
mechanisms. This point, coupled with the complex 
interplay of the hardware and DSP stages in the 



tester create a difficult environment to indentify 
and characterize errors generated internally.  
Demonstrated in the following section is an 
example of this type of systemic error in the tester 
procedure.  

 

 
Figure 3: Overview of the architecture of the ATE solution for 
EVM measurement  
 

CASE ANALYSIS 
 In the follow case study data an 8DPSK 
baseband Bluetooth transmitter DUT was digitized 
using a Teradyne tester and provided for signal 
analysis.  The data was input to two different DSP 
techniques for signal demodulation and 
computation of differential EVM (DEVM) in 
accordance to Bluetooth specifications.  The 
demodulation method used by the customer’s test 
plan (Method B) was a MATLAB script that would 
accept a captured data stream from the tester, 
demodulate the data and compute DEVM.  The 
methods in this routine were compared against a 
MATLAB/Simulink demodulation method and 
DEVM/EVM measurement developed at Roos 
Instruments (Method A) to be implemented in an 
FPGA. The focus was to identify and characterize 
impairments in the customer’s DUT, differentiate 
them from impairments in the demodulation 
process, and quantify the effects in term of 
DEVM/EVM for both approaches.  The 
comparison of the DSP techniques and analysis 
identify and discern test errors in both the hardware 
and software paths and provide insight into 
optimizing the demodulation process in the tester 
for more accurate measurement.  As well, the step-
by-step process taken to deconstruct the 
impairments and identify the sources of error in the 

measurement are presented to outline a debugging 
strategy for this type of testing and to provide merit 
to the procedure. As will be demonstrated, 
impairments introduced by the data capture process 
and artifacts created by the demodulation 
algorithms severely affected the resulting 
DEVM/EVM measurement. 
 The guidelines that both methods of digital 
demodulation and DEVM used were based on 
those outlined in the Bluetooth Specifications: 
Version 2.1.  However there were some differences 
between them, most notably the partitioning of the 
data set for processing and the methodology for 
signal correction.  Method B partitioned the data 
into blocks of 50 symbols for processing, setting 
correction values for IQ imbalance, frequency and 
phase offset using a constrained nonlinear 
multivariable function solver to minimize the 
resulting DEVM.  This used a recursive algorithm 
to optimize the correction factors for each set of 50 
symbols.  Below is the code’s method flow: 
 
1) Input data from file 
2) Apply Filter 

a) Square Root Raised Cosine 
3) Synch Data Stream (similar to carrier recovery) 

a) Use preamble 
4) Remove preamble from data 
5) Partition data into packets of 50 symbols 
6) Frequency Offset Correction 

a) Recursive algorithm optimizing for 
minimal EVM/DEVM 

7) Phase Offset Correction 
a) Recursive algorithm optimizing for 

minimal EVM/DEVM 
8) IQ Imbalance Compensation 

a) MATLAB Optimization Toolbox algorithm 
based on minimal EVM/DEVM 

9) Compute and output EVM/DEVM 
 
Method A processed the correction factors of IQ 
imbalance, and phase offset with manually 
adjustment by the user across the entire set of data 
before partitioning the recovered symbols into 
blocks of 50 for computing DEVM.  This was done 
as a precursory debugging strategy in order to 
allow for user control in adjusting the correction 
factors while the data was being demodulated.  By 
keeping the correction factors constant across the 
entire set of data, this prevented artifacts created by 



the partitioning and compensation techniques from 
masking and or skewing behavior inherent in the 
capture system, demodulation process and/or the 
DUT impairments.  Once the behavior and errors 
of the tester, DUT and demodulation algorithms 
could be identified, uncoupled from each other and 
then removed, the data could then benefit from 
phase, frequency and gain correction according to 
Bluetooth Specifications.  
 As stated before, the Simulink 
demodulation system used in Method A utilized 
components that translate directly to their FPGA 
counterparts.  The demodulator was comprised of 
several arithmetic and communication blocks that 
together comprised a complete system for 
recovering the data, correcting for impairments, 
and computing DEVM/EVM in a similar fashion to 
Method B with the additional test metrics provided 
by a vector signal analyzer for debugging purposes.  
The preamble was removed from the data, and the 
data was processed as one large set of streaming 
data.  The demodulation tool’s 
correction/compensation arithmetic could be 
accessed during simulation runtime and served as a 
synthetic instrument of a vector signal analyzer.  
With this analysis environment it was possible to 
view, measure and manually correct for: 
Quadrature offset error, IQ imbalance, Gain 
adjustment, DC offset correction, Magnitude Error, 
and Phase Error. The symbol timing recovery 
algorithm used was optimized for D8PDK..  The 
Squaring timing method was used for symbol 
recovery by estimating the symbol timing phase 
offset for a given sequence and outputting only the 
symbol spaced values by applying the estimate of 
the symbol location in the data uniformly over the 
sequence of data.  For the captured data, there are 
16 data points/symbol yielding 2793 symbols for 
the entire set of 44688 data points analyzed(after 
preamble removal).  For this demodulation system, 
the data was processed in blocks 32768 data points, 
i.e. the largest integer multiple of 16 that was less 
than or equal to 44688.  This was done to process 
as many points as possible with the same phase and 
timing recovery constants to reduce transient 
phenomena in the recovered symbols introduced by 
the demodulation system.  This recovery technique 
kept the symbol-timing phase constant for the 
entire observation interval, making it ideal for the 
observation of short duration transients, or random 

phase perturbations such as jitter in the data 
capture process. 
 Initially the data demonstrated considerable 
quadrature offset, that later was shown to be caused 
by the capture system rather than the DUT.   This 
example however demonstrates the initial difficulty 
in uncoupling the tester impairments in the 
demodulation flow from the DUT.  Following are 
the correction factors used on the initial recovered 
symbols before DEVM/EVM was calculated: 
 
Quadrature offset error:   32.4o 
IQ imbalance (I/Q):    1/1.14 
DC offset error (I/Q):   -0.08/-0.04 
Gain Adjustment:    11.4 
 

 
Figure 4:  DEVM comparison between Method A (red) and 

Method B (cyan) 
 

 Once the symbols were recovered and error 
correction was completed, measurement of the 
remaining symbol error (DEVM/EVM) could be 
computed as seen in Figure 4, for both Method A 
and the Method B for comparison.  The immediate 
discrepancy was the difference in the total number 
of symbols used for DEVM.  Method B was 
limited to a total of 500 symbols for demodulation 
and DEVM/EVM, but the data was found to 
contain ~2793 symbols, excluding the initial 
preamble.  This discrepancy was simply an internal 
processing preference to speed test time by limiting 
the data set to 10 groups of 50 symbol sets.  
Looking at the DEVM of Method A, it was 
significantly high initially and then reduces down 
to less than ~0.20rms with occasionally bursts of 
DEVM around 0.8rms.  Method B had similar 
peaks of around 0.8rms periodic with the symbol 
sets of 50, and an average value around ~0.2rms.  
Due to the periodicity of the large spikes in Method 



B’s DEVM measurement, they were likely the 
product of the demodulation method/algorithm.  
Looking at the recovered symbol constellation 
points in Figure 5 further strengthens this claim. 
 

 
Figure 5:  Demodulated symbols comparison between Method A 

(red) and Method B (cyan) 
 

 The clusters of symbol points from Method 
B have considerable more noise than the points 
demodulated using Method A.  As a point of 
reference, in an ideal 8-PSK signal (no noise and/or 
impairments), the symbols points in the 
constellation would cluster around their ideal phase 
values:  {0o, 45o, 90o, 135o, 180o, 225o, 270o, 
315o}.  It was difficult to explain the noisy 
behavior in Method B due to the 
compartmentalized/”black box” nature of the built-
in MATLAB functions used to optimize 
phase/frequency offset and IQ imbalance.  The 
error was most likely attributed to a combination of 
an insufficiently small data set to optimize across, 
coupled with a significant impairment(phase noise) 
in the data that renders the optimization to self-
defeat.  Suffice it to say that this approach of 
granting optimization algorithms free reign to seek 
a solution based on minimizing DEVM requires 
more oversight to prevent unpredictable results.  
Regardless of how the optimization technique 
arrived at the correction factor solution, this 
implementation yields a much more unstable and 
ultimately less optimal symbol recovery technique 
that was severely skewing any further conducted 

measurements downstream.  However, looking at 
the recovered symbols from Method A, there was 
still a considerable amount of phase noise that was 
affecting the data, and the root cause of this has yet 
to be determined.  In an effort to identify the cause 
of this, the following methodology was 
constructed. 
 With an impetus on isolating, and 
determining the nature of the phase behavior 
observed in the demodulated signal and large 
spikes in the DEVM measurement in Method A, a 
behavioral model was constructed using an 
identical demodulation system.  Driven by an ideal 
Differential 8-PSK signal generator and user 
controlled impairment blocks to simulate IQ 
imbalance, quadrature offset, phase noise, carrier 
frequency drift, and signal noise.  With this model, 
it was possible to emulate the behavior seen in the 
data from Method A, and extract measurements of 
the signal. 
 Using a phase noise generator and 
analyzing the symbol phase behavior and resulting 
DEVM/symbol, it was possible to recreate the 
noise behavior of the captured signal using 
50.5dBc/Hz and SNR (Es/No) of 46dB. By 
analyzing each symbol “phase channel” it was 
possible to view the distribution of the symbol 
phase.  In the case of phase noise, each symbol 
phase channel has essentially a Gaussian 
distribution about their respective ideal value.  The 
phase range recorded in this experiment yielded a 
distribution about the phase channel’s ideal value 
to be  +/- 18o with a σ = 5.6o.  This produced 
comparable DEVM behavior in terms of both 
average baseline DEVM(symbol regions with no 
spikes):  Simulation – 0.0574 rms; Captured Data – 
0.0509 rms, and with sufficient simulation runtime, 
random peaking of DEVM similar to that seen in 
the data of 0.8 rms. However, this failed to 
adequately explain the dense collection of spikes 
found in the beginning portion of the captured data 
DEVM in the symbol range of 0 - 1000.  
 



 
Figure 6:  Captured symbol phase “sub channels” 

behavior and resulting DEVM/EVM vs. Symbol Index 
 

 With a mechanism to compare against in 
the behavioral model, the phase symbol sub 
channels were analyzed from the provided data.  
Comparing the phase relationship of the captured 
data, symbol for symbol with DEVM/EVM in 
Figure 6.  It becomes quite apparent that a transient 
in the beginning portion of the data was causing the 
symbol phase in each channel to change, and 
affecting the EVM/DEVM.  It’s also worth noting 
in this specific case, there was a high correlation 
between EVM and DEVM ruling out a constant 
frequency/phase offset as a potential impairment 
culprit.  
 Employing the same strategy used to 
extract the phase behavior of a symbol “channel” 
in the simulation model, a subchannel of symbol 
phase points was extracted and used to produce a 
model of the phase behavior that was consistent 
across each subchannel.  Since the accuracy of the 
interpolation was dependent on the number of 
points contained in each specific symbol 
“channel”, and the data was pseudo random, the 
symbol phases occurring at -135o were selected 
arbitrarily for their perceived high concentration 
across the entire signal range. 
 Several iterations of curve fitting were 
employed to seek an optimum solution to use as 
phase correction of the original data by subtraction 
of a normalized, mirror image of these phase 
function approximations from the phase of the 
original signal.  In the following figures are graphs 
of the results of this methodology.  
 

 
Figure 7:  Comparison of Original Phase Symbols (top-left) & 
DEVM (bottom) vs. Phase Corrected Data Symbols (top-right) 
& DEVM (bottom): First Iteration – Interpolated function; 9th 

Degree Poly. Regression 
 

 In Figure 7, the first two function iterations 
are demonstrated:  the raw interpolated data 
approximation, and a 9th degree polynomial 
regression best-fit line of the interpolated data.  
Comparing the phase behavior of the original data 
vs. the phase corrected using these two types of 
curves shows a considerable improvement in 
removing the transient.  This was also reflected in 
the DEVM, with the initial peaks now significantly 
reduced.  The peak around symbol index 1850 was 
still present in all cases, as well as new peaks 
created by the interpolated function correction 
around symbols 750 and 2350.  These new peaks 
are most likely a byproduct of constructive phase 
noise error caused by the addition of the “noisy” 
phase approximation of the interpolated method.  
Note that the polynomial regression, which 
employs a smooth function approximation, 
eliminates these spurious values of DEVM. 
 

 
Figure 8:  Comparison of Original Data Phase & DEVM vs. 
Phase Corrected Data Phase & DEVM: Second Iteration – 

Modified 9th Degree Poly. Regression; RLC Transient Response 
 
 



 
 In the second iteration of phase correction, 
a modified 9th degree polynomial regression and an 
RLC transient approximation are used with the 
results shown in Figure 8.  Both these iterations 
were able to eliminate the spurious peaks in the 
DEVM measurement, with the RLC transient 
correction eliminating all of the spikes.  The RLC 
correction process demonstrated a high likelihood 
that these anomalies were a product of the tester 
hardware, and most likely caused by a transient 
during start-up, test initialization, etc.  Because the 
transient was severe enough initially, and the decay 
rate was roughly 25% of the entire data set, the 
overall effect in the constellation domain mimicked 
quadrature offset of what was previously reported 
of roughly 32o. The phase correction of the 
transient via the recovered symbols resulted in the 
mitigation of this measured quadrature offset, but a 
remaining phase noise of approximately 9%  could 
now be linked to the DUT with a high degree of 
certainty.  The RLC phase correction dramatically 
improved the peak DEVM and EVM by roughly a 
factor of 3x from 85%rms originally to 29%rms.  It 
was interesting to note that the large peaks in the 
DEVM/EVM of the original data would have 
constituted a failed part by virtue of the Bluetooth 
standards on acceptable DEVM/EVM; Looking at 
the average value of DEVM/EVM on the entire set 
of data, they contribute very little to the overall 

average when corrected (difference of ~1-2%).  
Over smaller sets of data, the contribution would 
certainly be more substantial, but this overall 
difference indicates the heightened sensitivity of 
this measurement even with averaging of over a 
1000 symbols.  
 

CONCLUSION 
 As seen in the example demonstrated, 
signal constellation analysis and EVM provide 
important feedback on the overall operation of a 
DUT, or as in this case a self-check mechanism of 
the tester.  It also highlights the importance of a  
close design synergy between the hardware and 
DSP in an EVM tester in order to provide reliable 
results.  With the added benefit of inserting an 
FPGA into the test module, considerable 
improvements in test time can be achieved by 
processing the large data sets in real-time with 
dedicated DSP and passing the results to the ATE 
controller PC.  The continued increase in the signal 
processing capabilities in the FPGA coupled with 
supporting DSP development platforms such as 
MATLAB have provided a springboard for quickly 
and easily implementing various baseband 
processing.  With the ability to reconfigure the 
baseband signal processing while maintaining the 
tester’s hardware front-end, this architecture 
provides a flexible EVM test platform that can 
accommodate new and emerging standards.   

 


